Skip to main content

Advertisement

Log in

Inhibitory effect of 405-nm blue LED light on the growth of Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We investigated whether irradiation with 405-nm blue LED light could inhibit the growth of not only single- but dual-species biofilms formed by Candida albicans and Streptococcus mutans on denture base resin and cause the alteration in gene expression related to adhesion and biofilm formation. C. albicans and S. mutans single-/dual-species biofilms were formed on the denture base specimens. The biofilms were irradiated with 405-nm blue LED light (power density output: 280 mW/cm2) for 0 (control) and 40 min. Dual-species biofilms were analyzed using CFU assay and fluorescence microscopy, and single-/dual-species biofilms were analyzed using alamarBlue assays and gene expression analysis. To assess the inhibitory effect of irradiation on dual-species biofilms, specimens after irradiation were aerobically incubated for 12 h. After incubation, the inhibition of growth was assessed using CFU assays and fluorescence microscopy. Data were analyzed using the Mann–Whitney U or Student’s t test (p < 0.05). Irradiation produced a significant inhibitory effect on biofilms. Fluorescence microscopy revealed that almost all C. albicans and S. mutans cells were killed by irradiation, and there was no notable difference in biofilm thickness immediately after irradiation and after irradiation and incubation for 12 h. alamarBlue assays indicated the growth of the biofilms was inhibited for 12–13 h. The expression of genes associated with adhesion and biofilm formation—als1 in C. albicans and ftf, gtfC, and gtfB in S. mutans—significantly reduced by irradiation. Irradiation with 405-nm blue LED light effectively inhibited the growth of C. albicans and S. mutans dual-species biofilms for 12 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gendreau L, Loewy ZG (2011) Epidemiology and etiology of denture stomatitis. J Prosthodont 20(4):251–260. https://doi.org/10.1111/j.1532-849X.2011.00698.x

    Article  PubMed  Google Scholar 

  2. Nikawa H, Hamada T, Yamamoto T (1998) Denture plaque–past and recent concerns. J Dent 26(4):299–304. https://doi.org/10.1016/s0300-5712(97)00026-2

    Article  CAS  PubMed  Google Scholar 

  3. Salerno C, Pascale M, Contaldo M, Esposito V, Busciolano M, Milillo L et al (2011) Candida-associated denture stomatitis. Med Oral Patol Oral Cir Bucal 16(2):e139–e143. https://doi.org/10.4317/medoral.16.e139

    Article  PubMed  Google Scholar 

  4. Mantzourani M, Gilbert SC, Fenlon M, Beighton D (2010) Non-oral bifidobacteria and the aciduric microbiota of the denture plaque biofilm. Mol Oral Microbiol 25(3):190–199. https://doi.org/10.1111/j.2041-1014.2009.00565.x

    Article  CAS  PubMed  Google Scholar 

  5. Yassin SA, German MJ, Rolland SL, Rickard AH, Jakubovics NS (2016) Inhibition of multispecies biofilms by a fluoride-releasing dental prosthesis copolymer. J Dent 48:62–70. https://doi.org/10.1016/j.jdent.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  6. Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9(10):737–748. https://doi.org/10.1038/nrmicro2636

    Article  CAS  PubMed  Google Scholar 

  7. Sánchez-Vargas LO, Estrada-Barraza D, Pozos-Guillen AJ, Rivas-Caceres R (2013) Biofilm formation by oral clinical isolates of Candida species. Arch Oral Biol 58(10):1318–1326. https://doi.org/10.1016/j.archoralbio.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Abrantes P, Africa CWJ (2020) Measuring Streptococcus mutans, Streptococcus sanguinis and Candida albicans biofilm formation using a real-time impedance-based system. J Microbiol Methods 169:105815. https://doi.org/10.1016/j.mimet.2019.105815

    Article  CAS  PubMed  Google Scholar 

  9. Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH et al (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82(5):1968–1981. https://doi.org/10.1128/iai.00087-14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nikawa H, Egusa H, Makihira S, Yamashiro H, Fukushima H, Jin C et al (2001) Alteration of the coadherence of Candida albicans with oral bacteria by dietary sugars. Oral Microbiol Immunol 16(5):279–283. https://doi.org/10.1034/j.1399-302x.2001.016005279.x

    Article  CAS  PubMed  Google Scholar 

  11. Rocha EP, Francisco SB, Del Bel Cury AA, Cury JA (2003) Longitudinal study of the influence of removable partial denture and chemical control on the levels of Streptococcus mutans in saliva. J Oral Rehabil 30(2):131–138. https://doi.org/10.1046/j.1365-2842.2003.01015.x

    Article  CAS  PubMed  Google Scholar 

  12. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122. https://doi.org/10.1038/nrd1008

    Article  CAS  PubMed  Google Scholar 

  13. Jagger DC, Harrison A (1995) Denture cleansing–the best approach. Br Dent J 178(11):413–417. https://doi.org/10.1038/sj.bdj.4808788

    Article  CAS  PubMed  Google Scholar 

  14. Moussa AR, Dehis WM, Elboraey AN, ElGabry HS (2016) A comparative clinical study of the effect of denture cleansing on the surface roughness and hardness of two denture base materials. Open Access Maced J Med Sci 4(3):476–481. https://doi.org/10.3889/oamjms.2016.089

    Article  PubMed  PubMed Central  Google Scholar 

  15. Freitas-Fernandes FS, Cavalcanti YW, Ricomini Filho AP, Silva WJ, Del Bel Cury AA, Bertolini MM (2014) Effect of daily use of an enzymatic denture cleanser on Candida albicans biofilms formed on polyamide and poly(methyl methacrylate) resins: an in vitro study. J Prosthet Dent 112(6):1349–1355. https://doi.org/10.1016/j.prosdent.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  16. Tsutsumi-Arai C, Arai Y, Terada-Ito C, Imamura T, Tatehara S, Ide S, et al. (2021) Microbicidal effect of 405-nm blue LED light on Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med Sci. doi: https://doi.org/10.1007/s10103-021-03323-z

  17. Tsutsumi-Arai C, Arai Y, Terada-Ito C, Takebe Y, Ide S, Umeki H et al (2019) Effectiveness of 405-nm blue LED light for degradation of Candida biofilms formed on PMMA denture base resin. Lasers Med Sci 34(7):1457–1464. https://doi.org/10.1007/s10103-019-02751-2

    Article  PubMed  Google Scholar 

  18. Carrera ET, Dias HB, Corbi SCT, Marcantonio RAC, Bernardi ACA, Bagnato VS et al (2016) The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review. Laser Phys 26(12):123001. https://doi.org/10.1088/1054-660x/26/12/123001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abegg MA, Alabarse PV, Casanova A, Hoscheid J, Salomon TB, Hackenhaar FS et al (2010) Response to oxidative stress in eight pathogenic yeast species of the genus Candida. Mycopathologia 170(1):11–20. https://doi.org/10.1007/s11046-010-9294-5

    Article  CAS  PubMed  Google Scholar 

  20. Nikinmaa S, Alapulli H, Auvinen P, Vaara M, Rantala J, Kankuri E et al (2020) Dual-light photodynamic therapy administered daily provides a sustained antibacterial effect on biofilm and prevents Streptococcus mutans adaptation. PLoS ONE 15(5):e0232775. https://doi.org/10.1371/journal.pone.0232775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fukui M, Yoshioka M, Satomura K, Nakanishi H, Nagayama M (2008) Specific-wavelength visible light irradiation inhibits bacterial growth of Porphyromonas gingivalis. J Periodontal Res 43(2):174–178. https://doi.org/10.1111/j.1600-0765.2007.01009.x

    Article  CAS  PubMed  Google Scholar 

  22. Tsutsumi C, Takakuda K, Wakabayashi N (2016) Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J Dent 44:37–43. https://doi.org/10.1016/j.jdent.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  23. Tsutsumi-Arai C, Takakusaki K, Arai Y, Terada-Ito C, Takebe Y, Imamura T et al (2019) Grapefruit seed extract effectively inhibits the Candida albicans biofilms development on polymethyl methacrylate denture-base resin. PLoS ONE 14(5):e0217496. https://doi.org/10.1371/journal.pone.0217496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  25. Ellepola K, Liu Y, Cao T, Koo H, Seneviratne CJ (2017) Bacterial GtfB augments Candida albicans accumulation in cross-kingdom biofilms. J Dent Res 96(10):1129–1135. https://doi.org/10.1177/0022034517714414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Septiana S, Bachtiar BM, Yuliana ND, Wijaya CH (2019) Cajuputs candy impairs Candida albicans and Streptococcus mutans mixed biofilm formation in vitro. F1000Res 8:1923. doi: https://doi.org/10.12688/f1000research.20700.2

  27. Shemesh M, Tam A, Steinberg D (2007) Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. J Med Microbiol 56(Pt 11):1528–1535. https://doi.org/10.1099/jmm.0.47146-0

    Article  CAS  PubMed  Google Scholar 

  28. Abastabar M, Hosseinpoor S, Hedayati MT, Shokohi T, Valadan R, Mirhendi H et al (2016) Hyphal wall protein 1 gene: a potential marker for the identification of different Candida species and phylogenetic analysis. Curr Med Mycol 2(4):1–8. https://doi.org/10.18869/acadpub.cmm.2.4.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. García-Sánchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3(2):536–545. https://doi.org/10.1128/ec.3.2.536-545.2004

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nobile CJ, Mitchell AP (2006) Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8(9):1382–1391. https://doi.org/10.1111/j.1462-5822.2006.00761.x

    Article  CAS  PubMed  Google Scholar 

  31. Berman J, Sudbery PE (2002) Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3(12):918–930. https://doi.org/10.1038/nrg948

    Article  CAS  PubMed  Google Scholar 

  32. Furuya K, Niki H (2010) The DNA damage checkpoint regulates a transition between yeast and hyphal growth in Schizosaccharomyces japonicus. Mol Cell Biol 30(12):2909–2917. https://doi.org/10.1128/mcb.00049-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCall AD, Pathirana RU, Prabhakar A, Cullen PJ, Edgerton M (2019) Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes 5(1):21. https://doi.org/10.1038/s41522-019-0094-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR et al (2008) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18(14):1017–24. https://doi.org/10.1016/j.cub.2008.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Connor L, Lahiff S, Casey F, Glennon M, Cormican M, Maher M (2005) Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler. Mol Cell Probes 19(3):153–162. https://doi.org/10.1016/j.mcp.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  36. Roudbarmohammadi S, Roudbary M, Bakhshi B, Katiraee F, Mohammadi R, Falahati M (2016) ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Adv Biomed Res 5:105. https://doi.org/10.4103/2277-9175.183666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nam YJ, Hwang YS (2021) Antibacterial and antioxidant effect of ethanol extracts of Terminalia chebula on Streptococcus mutans. Clin Exp Dent Res. https://doi.org/10.1002/cre2.467

  38. Wexler DL, Hudson MC, Burne RA (1993) Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture. Infect Immun 61(4):1259–1267. https://doi.org/10.1128/iai.61.4.1259-1267.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huffines JT, Scoffield JA (2020) Disruption of Streptococcus mutans and Candida albicans synergy by a commensal streptococcus. Sci Rep 10(1):19661. https://doi.org/10.1038/s41598-020-76744-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Srivastava N, Ellepola K, Venkiteswaran N, Chai LYA, Ohshima T, Seneviratne CJ (2020) Lactobacillus plantarum 108 inhibits Streptococcus mutans and Candida albicans mixed-species biofilm formation. Antibiotics (Basel) 9(8):478. https://doi.org/10.3390/antibiotics9080478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Osada Electric Co. Ltd. for technical support concerning an irradiation device.

Funding

This work was supported by JSPS KAKENHI (Grant Number 20K18649). The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this report, or the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Tsutsumi-Arai.

Ethics declarations

Ethics approval

None.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsumi-Arai, C., Arai, Y., Terada-Ito, C. et al. Inhibitory effect of 405-nm blue LED light on the growth of Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med Sci 37, 2311–2319 (2022). https://doi.org/10.1007/s10103-022-03507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-022-03507-1

Keywords

Navigation