Skip to main content

Advertisement

Log in

Effect of intense pulsed light using acne filter on eyelid margin telangiectasia in moderate-to-severe meibomian gland dysfunction

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Evaluate the improvement in clinical signs and symptoms in patients with moderate-to-severe meibomian gland dysfunction (MGD) treated with intense pulsed light (IPL) using an acne filter. A retrospective chart review of 70 eyes of 35 patients with moderate-to-severe MGD treated with IPL using the acne filter was performed. IPL treatment was administered using the acne filter four times at 2- to 3-week intervals to upper and lower eyelids. We evaluated tear break-up time (TBUT), matrix metalloproteinase (MMP)-9, Sjögren’s International Clinical Collaborative Alliance (SICCA) staining score, and Oxford staining grade. We performed Schirmer’s test I without topical anesthesia, slit-lamp microscopic examination of lid margin and meibomian gland, and patient’s symptom score assessment and evaluated the incidence of adverse effects in the ocular and periocular areas at baseline and 30 days after the final treatment. Significant improvements (P < 0.001) were observed in TBUT, SICCA staining score, Oxford staining grade, quality of meibum, consistency of meibum, lid margin telangiectasia, MGD grade, and patient’s symptom scores after acne filter IPL treatment. Furthermore, the positivity (100 to 71.43%, P = 0.002) and level (2.43 ± 0.98 to 1.14 ± 0.78, P < 0.001) of MMP-9 significantly decreased after treatment. However, there was no significant improvement in Schirmer’s test I (P = 0.224). No systemic or regional adverse effects were observed in any patient. IPL treatment using the acne filter is an effective and safe therapeutic modality for treating moderate-to-severe MGD, especially for lid margin telangiectasia and MMP-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Code availability

Not applicable.

References

  1. Knop E, Knop N, Millar T, Obata H, Sullivan DA (2011) The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci 52(4):1938–1978

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eom Y, Na KS, Cho KJ, Hwang HS, Kim SW, Chung TY et al (2019) Distribution and characteristics of meibomian gland dysfunction subtypes: a multicenter study in South Korea. Korean J Ophthalmol 33(3):205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nelson JD, Shimazaki J, Benitez-del-Castillo JM, Craig JP, McCulley JP, Den S et al (2011) The international workshop on meibomian gland dysfunction: report of the definition and classification subcommittee. Invest Ophthalmol Vis Sci 52(4):1930–1937

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goto E, Monden Y, Takano Y, Mori A, Shimmura S, Shimazaki J et al (2002) Treatment of non-inflamed obstructive meibomian gland dysfunction by an infrared warm compression device. Br J Ophthalmol 86(12):1403–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arita R, Suehiro J, Haraguchi T, Maeda S, Maeda K, Tokoro H et al (2013) Topical diquafosol for patients with obstructive meibomian gland dysfunction. Br J Ophthalmol 97(6):725–729

    Article  PubMed  Google Scholar 

  6. Epstein IJ, Rosenberg E, Stuber R, Choi MB, Donnenfeld ED, Perry HD (2020) Double-masked and unmasked prospective study of terpinen-4-ol lid scrubs with microblepharoexfoliation for the treatment of demodex blepharitis. Cornea 39(4):408–416

    Article  PubMed  Google Scholar 

  7. Tauber J (2020) A 6-week, prospective, randomized, single-masked study of lifitegrast ophthalmic solution 5% versus thermal pulsation procedure for treatment of inflammatory meibomian gland dysfunction. Cornea 39(4):403–407

    Article  PubMed  Google Scholar 

  8. Lee H, Chung B, Kim KS, Seo KY, Choi BJ, Kim TI (2014) Effects of topical loteprednol etabonate on tear cytokines and clinical outcomes in moderate and severe meibomian gland dysfunction: randomized clinical trial. Am J Ophthalmol 158(6):1172-1183.e1171

    Article  CAS  PubMed  Google Scholar 

  9. Lee H, Min K, Kim EK, Kim TI (2012) Minocycline controls clinical outcomes and inflammatory cytokines in moderate and severe meibomian gland dysfunction. Am J Ophthalmol 154(6):949-957.e941

    Article  CAS  PubMed  Google Scholar 

  10. Lee H, Kim M, Park SY, Kim EK, Seo KY, Kim TI (2017) Mechanical meibomian gland squeezing combined with eyelid scrubs and warm compresses for the treatment of meibomian gland dysfunction. Clin Exp Optom 100(6):598–602

    Article  PubMed  Google Scholar 

  11. Yoo SE, Lee DC, Chang MH (2005) The effect of low-dose doxycycline therapy in chronic meibomian gland dysfunction. Korean J Ophthalmol 19(4):258–263

    Article  PubMed  Google Scholar 

  12. Lienert JP, Tarko L, Uchino M, Christen WG, Schaumberg DA (2016) Long-term natural history of dry eye disease from the patient’s perspective. Ophthalmology 123(2):425–433

    Article  PubMed  Google Scholar 

  13. Alves M, Fonseca EC, Alves MF, Malki LT, Arruda GV, Reinach PS et al (2013) Dry eye disease treatment: a systematic review of published trials and a critical appraisal of therapeutic strategies. Ocul Surf 11(3):181–192

    Article  PubMed  Google Scholar 

  14. Moon SY, Han SA, Kwon HJ, Park SY, Lee JH, Chung HS et al (2021) Effects of lid debris debridement combined with meibomian gland expression on the ocular surface MMP-9 levels and clinical outcomes in moderate and severe meibomian gland dysfunction. BMC Ophthalmol 21(1):175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Toyos R, McGill W, Briscoe D (2015) Intense pulsed light treatment for dry eye disease due to meibomian gland dysfunction; a 3-year retrospective study. Photomed Laser Surg 33(1):41–46

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vora GK, Gupta PK (2015) Intense pulsed light therapy for the treatment of evaporative dry eye disease. Curr Opin Ophthalmol 26(4):314–318

    Article  PubMed  Google Scholar 

  17. Craig JP, Chen YH, Turnbull PR (2015) Prospective trial of intense pulsed light for the treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci 56(3):1965–1970

    Article  PubMed  Google Scholar 

  18. Arita R, Fukuoka S, Morishige N (2019) Therapeutic efficacy of intense pulsed light in patients with refractory meibomian gland dysfunction. Ocul Surf 17(1):104–110

    Article  PubMed  Google Scholar 

  19. Raulin C, Greve B, Grema H (2003) IPL technology: a review. Lasers Surg Med 32(2):78–87

    Article  PubMed  Google Scholar 

  20. Dell SJ (2017) Intense pulsed light for evaporative dry eye disease. Clin Ophthalmol 11:1167–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee H, Han YE, Park SY, Lee JH, Chung HS, Moon SY et al (2021) Changes in the expression of matrix metalloproteinase-9 after intense pulsed light therapy combined with meibomian gland expression in moderate and severe meibomian gland dysfunction. Cont Lens Anterior Eye 44(3):101339

    Article  PubMed  Google Scholar 

  22. Nichols KK, Foulks GN, Bron AJ, Glasgow BJ, Dogru M, Tsubota K et al (2011) The international workshop on meibomian gland dysfunction: executive summary. Invest Ophthalmol Vis Sci 52(4):1922–1929

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tomlinson A, Bron AJ, Korb DR, Amano S, Paugh JR, Pearce EI et al (2011) The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. Invest Ophthalmol Vis Sci 52(4):2006–2049

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roberts WE (2009) Skin type classification systems old and new. Dermatol Clin 27(4):529–533

    Article  CAS  PubMed  Google Scholar 

  25. Arita R, Mizoguchi T, Fukuoka S, Morishige N (2018) Multicenter study of intense pulsed light therapy for patients with refractory meibomian gland dysfunction. Cornea 37(12):1566–1571

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rasmussen A, Ice JA, Li H, Grundahl K, Kelly JA, Radfar L et al (2014) Comparison of the American-European Consensus Group Sjogren’s syndrome classification criteria to newly proposed American College of Rheumatology criteria in a large, carefully characterised sicca cohort. Ann Rheum Dis 73(1):31–38

    Article  PubMed  Google Scholar 

  27. Whitcher JP, Shiboski CH, Shiboski SC, Heidenreich AM, Kitagawa K, Zhang S et al (2010) A simplified quantitative method for assessing keratoconjunctivitis sicca from the Sjogren’s Syndrome International Registry. Am J Ophthalmol 149(3):405–415

    Article  PubMed  Google Scholar 

  28. Arita R, Minoura I, Morishige N, Shirakawa R, Fukuoka S, Asai K et al (2016) Development of definitive and reliable grading scales for meibomian gland dysfunction. Am J Ophthalmol 169:125–137

    Article  PubMed  Google Scholar 

  29. Shimazaki J, Sakata M, Tsubota K (1995) Ocular surface changes and discomfort in patients with meibomian gland dysfunction. Arch Ophthalmol 113(10):1266–1270

    Article  CAS  PubMed  Google Scholar 

  30. Green-Church KB, Butovich I, Willcox M, Borchman D, Paulsen F, Barabino S et al (2011) The international workshop on meibomian gland dysfunction: report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Invest Ophthalmol Vis Sci 52(4):1979–1993

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stahl U, Willcox M, Stapleton F (2012) Osmolality and tear film dynamics. Clin Exp Optom 95(1):3–11

    Article  PubMed  Google Scholar 

  32. Baudouin C (2007) A new approach for better comprehension of diseases of the ocular surface. J Fr Ophtalmol 30(3):239–246

    Article  CAS  PubMed  Google Scholar 

  33. Mudgil P (2014) Antimicrobial role of human meibomian lipids at the ocular surface. Invest Ophthalmol Vis Sci 55(11):7272–7277

    Article  CAS  PubMed  Google Scholar 

  34. Borchman D, Foulks GN, Yappert MC, Milliner SE (2012) Differences in human meibum lipid composition with meibomian gland dysfunction using NMR and principal component analysis. Invest Ophthalmol Vis Sci 53(1):337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Graham JE, Moore JE, Jiru X, Moore JE, Goodall EA, Dooley JS et al (2007) Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci 48(12):5616–5623

    Article  PubMed  Google Scholar 

  36. Baudouin C, Messmer EM, Aragona P, Geerling G, Akova YA, Benitez-del-Castillo J et al (2016) Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol 100(3):300–306

    Article  PubMed  Google Scholar 

  37. Xue AL, Wang MTM, Ormonde SE, Craig JP (2020) Randomised double-masked placebo-controlled trial of the cumulative treatment efficacy profile of intense pulsed light therapy for meibomian gland dysfunction. Ocul Surf 18(2):286–297

    Article  PubMed  Google Scholar 

  38. Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8):1909–1918

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiang X, Wang Y, Lv H, Liu Y, Zhang M, Li X (2018) Efficacy of intra-meibomian gland injection of the anti-VEGF agent bevacizumab for the treatment of meibomian gland dysfunction with lid-margin vascularity. Drug Des Devel Ther 12:1269–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaufman HE (2013) The practical detection of mmp-9 diagnoses ocular surface disease and may help prevent its complications. Cornea 32(2):211–216

    Article  PubMed  Google Scholar 

  41. Chotikavanich S, de Paiva CS, de Li Q, Chen JJ, Bian F, Farley WJ et al (2009) Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci 50(7):3203–3209

    Article  PubMed  Google Scholar 

  42. Ruan F, Zang Y, Sella R, Lu H, Li S, Yang K et al (2019) Intense pulsed light therapy with optimal pulse technology as an adjunct therapy for moderate to severe blepharitis-associated keratoconjunctivitis. J Ophthalmol 2019:3143469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cheng SN, Jiang FG, Chen H, Gao H, Huang YK (2019) Intense pulsed light therapy for patients with meibomian gland dysfunction and ocular demodex infestation. Curr Med Sci 39(5):800–809

    Article  CAS  PubMed  Google Scholar 

  44. Ibrahimi OA, Avram MM, Hanke CW, Kilmer SL, Anderson RR (2011) Laser hair removal. Dermatol Ther 24(1):94–107

    Article  PubMed  Google Scholar 

  45. Alexis AF (2013) Lasers and light-based therapies in ethnic skin: treatment options and recommendations for Fitzpatrick skin types V and VI. Br J Dermatol 169(Suppl 3):91–97

    Article  PubMed  Google Scholar 

  46. Lee WW, Murdock J, Albini TA, O’Brien TP, Levine ML (2011) Ocular damage secondary to intense pulse light therapy to the face. Ophthalmic Plast Reconstr Surg 27(4):263–265

    Article  PubMed  Google Scholar 

  47. Pang AL, Wells K (2008) Bilateral anterior uveitis after intense pulsed light therapy for pigmented eyelid lesions. Dermatol Surg 34(9):1276–1279

    CAS  PubMed  Google Scholar 

  48. Javey G, Schwartz SG, Albini TA (2010) Ocular complication of intense pulsed light therapy: iris photoablation. Dermatol Surg 36(9):1466–1468

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Korea Medical Device Development Fund, granted by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy; the Ministry of Health and Welfare; the Ministry of Food and Drug Safety) (Project Number: 9991006821, KMDF_PR_20200901_0148), by Korean Fund for Regenerative Medicine funded by Ministry of Science and ICT, and Ministry of Health and Welfare (HH21C0012, Republic of Korea), and by a grant from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea (2021IP0059-1, 2021IP0061-1).

Author information

Authors and Affiliations

Authors

Contributions

JYH: Concept and study design. Data collection. Data interpretation. Data analysis and statistics. Drafting of manuscript.

YL: Concept and study design. Data collection. Data interpretation. Data analysis and statistics.

SN: Data collection. Data interpretation. Data analysis and statistics.

SYM: Data collection. Data interpretation. Data analysis and statistics.

JYK: Study supervision. Revision and final approval of manuscript.

HT: Study supervision. Revision and final approval of manuscript.

HL: Study supervision. Concept and study design. Data interpretation. Data analysis and statistics. Drafting of manuscript. Revision and final approval of manuscript.

Corresponding author

Correspondence to Hun Lee.

Ethics declarations

Ethics approval

This study adhered to the tenets of the Declaration of Helsinki. The Ethics Committee of Asan Medical Center (Seoul, Republic of Korea) approved the study protocol.

Consent to participate

Written informed consent was waived for this study given its retrospective design.

Consent for publication

Written informed consent was waived for this study given its retrospective design.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J.Y., Lee, Y., Nam, S. et al. Effect of intense pulsed light using acne filter on eyelid margin telangiectasia in moderate-to-severe meibomian gland dysfunction. Lasers Med Sci 37, 2185–2192 (2022). https://doi.org/10.1007/s10103-021-03482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03482-z

Keywords

Navigation