Skip to main content
Log in

Advances in adaptive optics–based two-photon fluorescence microscopy for brain imaging

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Deep tissue imaging using two-photon fluorescence (TPF) techniques have revolutionized the optical imaging community by providing in depth molecular information at the single-cell level. These techniques provide structural and functional aspects of mammalian brain at unprecedented depth and resolution. However, wavefront distortions introduced by the optical system as well as the biological sample (tissue) limit the achievable fluorescence signal-to-noise ratio and resolution with penetration depth. In this review, we discuss on the advances in TPF microscopy techniques for in vivo functional imaging and offer guidelines as to which technologies are best suited for different imaging applications with special reference to adaptive optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C et al (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science 321:1686–1689

    CAS  PubMed  Google Scholar 

  2. Miquelajauregui A, Kribakaran S, Mostany R, Badaloni A, Consalez GG, Portera-Cailliau C (2015) Layer 4 pyramidal neurons exhibit robust dendritic spine plasticity in vivo after input deprivation. J Neuroscience 35:7287–7294

    CAS  Google Scholar 

  3. Kim T, Oh WC, Choi JH, Kwon HB (2016) Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo. Proc Natl Acad Sci U S A 113:E1372–E1381

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature 11:749–751

    CAS  Google Scholar 

  5. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    CAS  PubMed  Google Scholar 

  6. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    CAS  PubMed  Google Scholar 

  7. Mertz J (2004) Nonlinear microscopy: new techniques and applications. Cur Opin Neurobiology 14:610–616

    CAS  Google Scholar 

  8. Meng G, Liang Y, Sarsfield S, Jiang WC, Lu R, Dudman JT et al (2019) High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. Elife 8:e40805

    PubMed  PubMed Central  Google Scholar 

  9. Piazza S, Bianchini P, Sheppard C, Diaspro A, Duocastella M (2018) Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping. J Biophotonics 11:e201700050

    Google Scholar 

  10. Abdeladim L, Matho KS, Clavreul S, Mahou P, Sintes JM, Solinas X et al (2019) Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat Commun 10:1662

    PubMed  PubMed Central  Google Scholar 

  11. Ricard C, Arroyo ED, He CX, Portera-Cailliau C, Lepousez G, Canepari M et al (2018) Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cell. Brain Struct Funct 223:3011–3043

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen IW, Ronzitti E, Lee BR, Daigle TL, Dalkara D, Zeng H et al (2019) In vivo submillisecond two-photon optogenetics with temporally focused patterned light. J Neurosci 39:3484–3497

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahn C, Hwang B, Nam K, Jin H, Woo T, Park JH (2019) Overcoming the penetration depth limit in optical microscopy: Adaptive optics and wavefront shaping. J. Innov. Opt. Health Sci 12:1930002

    CAS  Google Scholar 

  14. Rodríguez C, Ji N (2018) Adaptive optical microscopy for neurobiology. Cur Opin Neurobiol 50:83–91

    Google Scholar 

  15. Park JH, Yu Z, Lee K, Lai P, Park Y (2018) Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications. APL Photonics 3:100901

    Google Scholar 

  16. Turcotte R, Liang Y, Ji N (2017) Adaptive optical versus spherical aberration corrections for in vivo brain imaging. Biomed Opt Express 8:3891–3902

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bueno JM, Skorsetz M, Bonora S, Artal P (2018) Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens. Opt Express 26:14278–14287

    CAS  PubMed  Google Scholar 

  18. Galwaduge P, Kim S, Grosberg L, Hillman E (2015) Simple wavefront correction framework for two-photon microscopy of in-vivo brain. Biomed Opt Express 6:2997–3013

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ (2009) Advances in light microscopy for neuroscience. Ann Rev Neurosci 3:435–506

    Google Scholar 

  20. Matsumoto N, Inoue T, Matsumoto A, Okazaki S (2015) Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator. Biomed Opt Express 6:2575–2587

    PubMed  PubMed Central  Google Scholar 

  21. Mittmann W, Wallace DJ, Czubayko U, Herb JT, Schaefer AT, Looger LLO et al (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat Neurosci 14:1089–1093

    CAS  PubMed  Google Scholar 

  22. Grinvald A, Frostig RD, Siegel RM, Bartfeld E (1991) High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci U S A 88:11559–11563

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu L, Gutruf P, Xia L, Bhatti LD, Wang X et al (2018) Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc Natl Acad Sci U S A 115:E1374–E138s3

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73

    CAS  PubMed  Google Scholar 

  25. Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Ann Rev Neurosci 30:79–97

    CAS  PubMed  Google Scholar 

  26. Yaseen MA, Sakadžić S, Wu W, Becker W, Kasischke KA, Boas DA (2013) In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed Opt Express 4:307–321

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang HK, Majewska A, Schummers J, Farley B, Hu C, Sur M, Tonegawa S (2006) In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 126:389–402

    CAS  PubMed  Google Scholar 

  28. Birkner A, Tischbirek CH, Konnerth A (2017) Improved deep two-photon calcium imaging in vivo. Cell Calcium 64:29–35

    CAS  PubMed  Google Scholar 

  29. Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:11

    Google Scholar 

  30. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100:7319–7324

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Theer P, Denk W (2006) On the fundamental imaging-depth limit in two-photon microscopy. JOSA A 23:3139–3149

    PubMed  Google Scholar 

  32. Yang W, Carrillo-Reid L, Bando Y, Peterka DS, Yuste R (2018) Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. Elife 7:e32671

    PubMed  PubMed Central  Google Scholar 

  33. Kawakami R., Sawada K., Sato A., Hibi T., Kozawa Y., Sato S., et al. (2013) Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser, Sci Rep, 3.

  34. Yasuda R, Harvey CD, Zhong H, Sobczyk A, Van Aelst L, Svoboda K (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9:283

    CAS  PubMed  Google Scholar 

  35. Zong W, Wu R, Li M, Hu Y, Li Y, Li J et al (2017) Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14:713

    CAS  PubMed  Google Scholar 

  36. Peters AJ, Liu H, Komiyama T (2017) Learning in the rodent motor cortex. Ann Rev Neurosci 40:77–97

    CAS  PubMed  Google Scholar 

  37. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ et al (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16:264–266

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A et al (2014) Natural neural projection dynamics underlying social behaviour. Cell 157:1535–1551

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Resendez SL, Stuber GD (2015) In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behaviour. Neuropsychopharmacology 40:238

    CAS  PubMed  Google Scholar 

  41. Barretto RP, Ko TH, Jung JC, Wang TJ, Capps G, Waters AC et al (2011) Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17:223–228

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Delgado E. M., Psaltis D., Moser C. (2016) Two-photon excitation endoscopy through a multimode optical fiber, in: SPIE BiOS, International Society for Optics and Photonics, 97171E–97171E.

  43. Bocarsly ME, Jiang WC, Wang C, Dudman JT, Ji N, Aponte Y (2015) Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed Opt Express 6:4546–4556

    PubMed  PubMed Central  Google Scholar 

  44. Champelovier D, Teixeira J, Conan JM, Balla N, Mugnier LM, Tressard T et al (2017) Image-based adaptive optics for in vivo imaging in the hippocampus. Sci Rep 7:42924

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Forli A, Vecchia D, Binini N, Succol F, Bovetti S, Moretti C et al (2018) Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep 22:3087–3098

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kramer RH, Fortin DL, Trauner D (2009) New photochemical tools for controlling neuronal activity. Curr Opin Neurobiol 19:544–552

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bednarkiewicz A, Bouhifd M, Whelan MP (2008) Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging. Appl Opt 47:1193–1199

    PubMed  Google Scholar 

  48. Gustafsson MG, Shao L, Carlton PM, Wang CR, Golubovskaya IN, Cande WZ et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophy J 94:4957–4970

    CAS  Google Scholar 

  49. Losavio BE, Iyer V, Saggau P (2009) Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices. J Biomed Opt 14:064033–064014

    PubMed  PubMed Central  Google Scholar 

  50. Dal MM, Difato F, Beltramo R, Blau A, Benfenati F, Fellin T (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18:18720–18731

    Google Scholar 

  51. Lutz C, Otis TS, DeSars V, Charpak S, DiGregorio DA, Emiliani V (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Feeks JA, Hunter JJ (2017) Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. Biomed Opt Express 8:2483–2495

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mostany R., Miquelajauregui A., Shtrahman M., Portera-Cailliau C. (2015) Two-photon excitation microscopy and its applications in neuroscience, Advanced fluorescence microscopy: Methods and Protocols, 25-42.

    Google Scholar 

  54. Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20:20998–21009

    PubMed  PubMed Central  Google Scholar 

  55. Facomprez A, Beaurepaire E, Débarre D (2012) Accuracy of correction in modal sensorless adaptive optics. Opt Express 20:2598–2612

    PubMed  Google Scholar 

  56. Packer MA, Russell EL, Dalgleish WPH, Häusser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146

    CAS  PubMed  Google Scholar 

  57. Nikolenko V., Watson B. O., Araya R., Woodruff A., Peterka D. S., Yuste R. (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators, Front Neural Circuits, 2.

  58. Wang K, Milkie DE, Saxena A, Engerer P, Misgeld T, Bronner ME et al (2014) Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods 11:625–628

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tao X, Norton A, Kissel M, Azucena O, Kubby J (2013) Adaptive optical two-photon microscopy using autofluorescent guide stars. Opt Lett 38:5075–5078

    PubMed  Google Scholar 

  60. Quirin S, Jackson J, Peterka DS, Yuste R (2014) Simultaneous imaging of neural activity in three dimensions. Front Neural Circuits 8:29

    PubMed  PubMed Central  Google Scholar 

  61. Yang W, Miller JE, Carrillo-Reid L, Pnevmatikakis E, Paninski L, Yuste R et al (2016) Simultaneous multi-plane imaging of neural circuits. Neuron 89:269–284

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Champelovier D., Teixeira J., Conan J. M., Balla N., Mugnier L., Tressard T., et al (2017) Image-based adaptive optics for in vivo imaging in the hippocampus, Sci Rep, 7.

  63. Skorsetz M, Artal P, Bueno JM (2016) Performance evaluation of a sensorless adaptive optics multiphoton microscope. J Microscopy 261:249–258

    Google Scholar 

  64. Marsh P, Marsh D, Girkin J (2003) Practical implementation of adaptive optics in multiphoton microscopy. Opt Express 11:1123–1130

    CAS  PubMed  Google Scholar 

  65. Débarre D, Botcherby EJ, Watanabe T, Srinivas S, Booth MJ, Wilson T (2009) Image-based adaptive optics for two-photon microscopy. Opt Lett 34:2495–2497

    PubMed  PubMed Central  Google Scholar 

  66. Zeng J, Mahou P, Schanne-Klein MC, Beaurepaire E, Débarre D (2012) 3D resolved mapping of optical aberrations in thick tissues. Biomed Opt Express 3(1898-1913):2012

    Google Scholar 

  67. Booth MJ (2014) Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl 3:e165

    Google Scholar 

  68. Cha JW, Ballesta J, So PT (2010) Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. J Biomed Optics 15:046022–046010

    Google Scholar 

  69. Rueckel M, Mack-Bucher JA, Denk W (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci U S A 103:17137–17142

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ji N, Sato TR, Betzig E (2012) Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci U S A 109:22–27

    CAS  PubMed  Google Scholar 

  71. Aviles-Espinosa R, Andilla J, Porcar-Guezenec R, Olarte OE, Nieto M, Levecq X et al (2011) Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed Opt Express 2:3135–3149

    PubMed  PubMed Central  Google Scholar 

  72. Wang K., Sun W., Richie C. T., Harvey B. K., Betzig E., Ji N. (2015) Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue, Nat Commun, 6.

  73. Ji N, Milkie DE, Betzig E (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7:141–147

    CAS  PubMed  Google Scholar 

  74. Park JH, Kong L, Zhou Y, Cui M (2017) Large-field-of-view imaging by multi-pupil adaptive optics. Nat Methods 14:581–583

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ji N (2017) Adaptive optical fluorescence microscopy. Nat Methods 14:374–380

    CAS  PubMed  Google Scholar 

  76. Yang W, Yuste R (2017) In vivo imaging of neural activity. Nat Methods 14:349–359

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gautam V, Drury J, Choy JM, Stricker C, Bachor HA, Daria VR (2015) Improved two-photon imaging of living neurons in brain tissue through temporal gating. Biomed Opt Express 6:4027–4036

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Winter PW, York AG, Dalle ND, Ingaramo M, Christensen R, Chitnis A et al (2014) Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica 1:181–191

    PubMed  PubMed Central  Google Scholar 

  79. Zheng W, Wu Y, Winter P, Fischer R, Nogare DD, Hong A et al (2017) Adaptive optics improves multiphoton super-resolution imaging. Nat Methods 14:869

    CAS  PubMed  Google Scholar 

  80. Bar-Noam AS, Farah N, Shoham S (2016) Correction-free remotely scanned two-photon in vivo mouse retinal imaging. Light Sci Appl 5:e16007

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. K. Satyamoorthy, Director, Manipal School of Life Sciences (MSLS), Manipal for his encouragement. Authors thank Dr. K. K. Mahato, Head of Department of Biophysics, MSLS for his constant support and Manipal Academy of Higher Education (MAHE), Manipal, India, for providing the infrastructure needed.

Funding

We reeived financial support from the SERB-Department of Science and Technology (DST), Government of India (Project Number—ECR/2016/001944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Mazumder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P., Mazumder, N. Advances in adaptive optics–based two-photon fluorescence microscopy for brain imaging. Lasers Med Sci 35, 317–328 (2020). https://doi.org/10.1007/s10103-019-02908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02908-z

Keywords

Navigation