Skip to main content

Advertisement

Log in

Laser asymmetric ablation method to improve corneal shape

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aims to assess whether central-symmetric corneal thickness reduces off-centered corneal shift caused by intraocular pressure (IOP). In this retrospective study, 122 healthy eyes of 62 presbyopic patients, mostly myopic, were divided into two groups. Two distinct asymmetric corneal ablations were applied in peripheral presbyopia correction to produce central-symmetric corneal thickness, which reduces the off-centered corneal shift by utilizing intraocular pressure. The first method used a 90° angled combination in group 1 and the second method used a 45° angled combination in group 2. Target refraction was spherical equivalent of − 1D. Self-developed image processing algorithm analyzed the change in thickness and the posterior cone, and obtained two factors: central symmetry (f) and visual axis deviation (d), from each eye’s pre and postoperative maps of Orbscan II. UDVA and UNVA were also analyzed. In both groups, mean SE was about − 1D and there was no significant difference in UDVA. UNVA was better in group 2 than group 1. Only in group 2, corneal thickness and posterior cone became central-symmetric and the posterior corneal apex point relocated towards the visual axis. The p values were 0.03, 0.04, and 0.03, respectively. This is the first study to control corneal shape by utilizing the interaction between intraocular pressure and corneal thickness. Only group 2 was applied with asymmetric corneal ablation created by the 45° angled combination of semi-cylindrical ablation patterns, and intraocular pressure contributed significantly to reduce the off-centered corneal shift and reshaped the posterior corneal cone to the center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sjontoft E, Edmund C (1987) In vivo determination of Young’s modulus for the human cornea. Bull Math Biol 49(2):217–232

    CAS  PubMed  Google Scholar 

  2. Elsheikh A, McMonnies CW, Whitford C, Boneham GC (2015) In vivo study of corneal responses to increased intraocular pressure loading. Eye Vision 2. https://doi.org/10.1186/s40662-015-0029-z

  3. Polack FM (1961) Morphology of the cornea. I. Study with silver stains. Am J Ophthalmol 51:1051–1056

    Article  CAS  PubMed  Google Scholar 

  4. Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32(8):2244–2258

    CAS  PubMed  Google Scholar 

  5. Oyster CW (1999) The human eye: structure and function. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  6. Hamada R, Giraud JP, Graf B, Pouliquen Y (1972) Analytical and statistical study of the lamellae, keratocytes and collagen fibrils of the central region of the normal human cornea. (Light and electron microscopy). Arch d’Ophtalmol Rev Gen d’Ophtalmol 32(8):563–570

    CAS  Google Scholar 

  7. Meek KM, Boote C (2004) The organization of collagen in the corneal stroma. Exp Eye Res 78(3):503–512

    Article  CAS  PubMed  Google Scholar 

  8. Newton RH, Meek KM (1998) Circumcorneal annulus of collagen fibrils in the human limbus. Invest Ophthalmol Vis Sci 39(7):1125–1134

    CAS  PubMed  Google Scholar 

  9. Newton RH, Meek KM (1998) The integration of the corneal and limbal fibrils in the human eye. Biophys J 75(5):2508–2512. https://doi.org/10.1016/s0006-3495(98)77695-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boote C, Dennis S, Huang Y, Quantock AJ, Meek KM (2005) Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol 149(1):1–6. https://doi.org/10.1016/j.jsb.2004.08.009

    Article  PubMed  Google Scholar 

  11. Meek KM (2008) The cornea and sclera. In: Fratzl P (ed) Collagen, structure and biomechanics. Springer Science, New York

    Google Scholar 

  12. Schmack I, Dawson DG, McCarey BE, Waring GO 3rd, Grossniklaus HE, Edelhauser HF (2005) Cohesive tensile strength of human LASIK wounds with histologic, ultrastructural, and clinical correlations. J Refract Surg 21(5):433–445

    PubMed  Google Scholar 

  13. Dawson DG, Kramer TR, Grossniklaus HE, Waring GO 3rd, Edelhauser HF (2005) Histologic, ultrastructural, and immunofluorescent evaluation of human laser-assisted in situ keratomileusis corneal wounds. Arch Ophthalmol 123(6):741–756. https://doi.org/10.1001/archopht.123.6.741

    Article  PubMed  Google Scholar 

  14. Smadja D, Santhiago MR, Mello GR, Roberts CJ, Dupps WJ Jr, Krueger RR (2012) Response of the posterior corneal surface to myopic laser in situ keratomileusis with different ablation depths. J Cataract Refract Surg 38(7):1222–1231. https://doi.org/10.1016/j.jcrs.2012.02.044

    Article  PubMed  Google Scholar 

  15. Muller L, Pels E, Vrensen G (2001) The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol 85(4):437–443. https://doi.org/10.1136/bjo.85.4.437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamilton DR, Johnson RD, Lee N, Bourla N (2008) Differences in the corneal biomechanical effects of surface ablation compared with laser in situ keratomileusis using a microkeratome or femtosecond laser. J Cataract Refract Surg 34(12):2049–2056. https://doi.org/10.1016/j.jcrs.2008.08.021

    Article  PubMed  Google Scholar 

  17. Qazi MA, Sanderson JP, Mahmoud AM, Yoon EY, Roberts CJ, Pepose JS (2009) Postoperative changes in intraocular pressure and corneal biomechanical metrics laser in situ keratomileusis versus laser-assisted subepithelial keratectomy. J Cataract Refract Surg 35(10):1774–1788. https://doi.org/10.1016/j.jcrs.2009.05.041

    Article  PubMed  Google Scholar 

  18. Sutton GL, Kim P (2010) Laser in situ keratomileusis in 2010—a review. Clin Exp Ophthalmol 38(2):192–210. https://doi.org/10.1111/j.1442-9071.2010.02227.x

    Article  PubMed  Google Scholar 

  19. Ortiz D, Pinero D, Shabayek MH, Arnalich-Montiel F, Alio JL (2007) Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg 33(8):1371–1375. https://doi.org/10.1016/j.jcrs.2007.04.021

    Article  PubMed  Google Scholar 

  20. Ambrósio R, Wilson SE (2003) LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol 18(1):2–10. https://doi.org/10.1076/soph.18.1.2.14074

    Article  PubMed  Google Scholar 

  21. Roberts C (2000) The cornea is not a piece of plastic. J Refract Surg 16(4):407–413

    CAS  PubMed  Google Scholar 

  22. Hernández-Quintela E, Samapunphong S, Khan BF, Gonzalez B, Lu PC-S, Farah SG, Azar DT (2001) Posterior corneal surface changes after refractive surgery. Ophthalmology 108(8):1415–1422

    Article  PubMed  Google Scholar 

  23. Wang Z, Chen J, Yang B (1999) Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness. Ophthalmology 106(2):406–410

    Article  CAS  PubMed  Google Scholar 

  24. Kamiya K, Oshika T, Amano S, Takahashi T, Tokunaga T, Miyata K (2000) Influence of excimer laser photorefractive keratectomy on the posterior corneal surface. J Cataract Refract Surg 26(6):867–871

    Article  CAS  PubMed  Google Scholar 

  25. Miyata K, Kamiya K, Takahashi T, Tanabe T, Tokunaga T, Amano S, Oshika T (2002) Time course of changes in corneal forward shift after excimer laser photorefractive keratectomy. Arch Ophthalmol 120(7):896–900

    Article  PubMed  Google Scholar 

  26. Kim H, Kim HJ, Joo C-K (2006) Comparison of forward shift of posterior corneal surface after operation between LASIK and LASEK. Ophthalmologica 220(1):37–42

    Article  PubMed  Google Scholar 

  27. Ciolino JB, Belin MW (2006) Changes in the posterior cornea after laser in situ keratomileusis and photorefractive keratectomy. J Cataract Refract Surg 32(9):1426–1431. https://doi.org/10.1016/j.jcrs.2006.03.037

    Article  PubMed  Google Scholar 

  28. Ciolino JB, Khachikian SS, Cortese MJ, Belin MW (2007) Long-term stability of the posterior cornea after laser in situ keratomileusis. J Cataract Refract Surg 33(8):1366–1370. https://doi.org/10.1016/j.jcrs.2007.04.016

    Article  PubMed  Google Scholar 

  29. Vicente D, Clinch TE, Kang PC (2008) Changes in posterior corneal elevation after laser in situ keratomileusis enhancement. J Cataract Refract Surg 34(5):785–788. https://doi.org/10.1016/j.jcrs.2007.12.040

    Article  PubMed  Google Scholar 

  30. Chan TCY, Biswas S, Yu M, Jhanji V (2015) Longitudinal evaluation of cornea with swept-source optical coherence tomography and Scheimpflug imaging before and after Lasik. Medicine 94(30). https://doi.org/10.1097/md.0000000000001219

    Article  PubMed  PubMed Central  Google Scholar 

  31. Seiler T, Koufala K, Richter G (1998) Iatrogenic keratectasia after laser in situ keratomileusis. J Refract Surg 14(3):312–317

    CAS  PubMed  Google Scholar 

  32. Seiler T, Quurke AW (1998) Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg 24(7):1007–1009

    Article  CAS  PubMed  Google Scholar 

  33. Lee MJ, Lee SM, Lee HJ, Wee WR, Lee JH, Kim MK (2007) The changes of posterior corneal surface and high-order aberrations after refractive surgery in moderate myopia. Korean J Ophthalmol 21(3):131–136. https://doi.org/10.3341/kjo.2007.21.3.131

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oshika T, Klyce SD, Applegate RA, Howland HC, El Danasoury MA (1999) Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 127(1):1–7

    Article  CAS  PubMed  Google Scholar 

  35. Seiler T, Kaemmerer M, Mierdel P, Krinke HE (2000) Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol 118(1):17–21

    Article  CAS  PubMed  Google Scholar 

  36. Chalita MR, Chavala S, Xu M, Krueger RR (2004) Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography. Ophthalmology 111(3):447–453. https://doi.org/10.1016/j.ophtha.2003.06.022

    Article  PubMed  Google Scholar 

  37. Sharma M, Wachler BS, Chan CC (2007) Higher order aberrations and relative risk of symptoms after LASIK. J Refract Surg 23(3):252–256

    Article  PubMed  Google Scholar 

  38. Kirwan C, O'Keefe M (2009) Comparative study of higher-order aberrations after conventional laser in situ keratomileusis and laser epithelial keratomileusis for myopia using the technolas 217z laser platform. Am J Ophthalmol 147(1):77–83. https://doi.org/10.1016/j.ajo.2008.07.014

    Article  PubMed  Google Scholar 

  39. Liu Z, Huang A, Pflugfelder S (1999) Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system. Br J Ophthalmol 83(7):774–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park WC, Rho SH, Jin SW, Park KS, Min BM, Lee JH (2012) The long-term result of corneal correction of presbyopia with Kera laser. Invest Ophthalmol Vis Sci 53(14):289–289

    Google Scholar 

  41. Carriazo C, Cosentino M (2017) A novel corneal remodeling technique for the management of keratoconus. J Refract Surg 33:854–856. https://doi.org/10.3928/1081597X-20171004-05

    Article  PubMed  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alberto Rodríguez Agudo.

Ethics declarations

Conflict of interest

Kisung Park, Jinyoung Park, and Jina Park hold Europe, China, Japan, and US patents for the Laser Asymmetric Keratectomy (LAK) for point-symmetric corneal correction. None of the other authors has a financial or proprietary interest in any material or method mentioned.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The National Bioethics Committee in Seoul, Republic of South Korea, stated that no IRB approval was required for the retrospective analysis of the data.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agudo, J.A.R., Park, J., Park, J. et al. Laser asymmetric ablation method to improve corneal shape. Lasers Med Sci 34, 1763–1779 (2019). https://doi.org/10.1007/s10103-019-02770-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02770-z

Keywords

Navigation