Skip to main content
Log in

Acute effects of photobiomodulation therapy (PBMT) combining laser diodes, light-emitting diodes, and magnetic field in exercise capacity assessed by 6MST in patients with COPD: a crossover, randomized, and triple-blinded clinical trial

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by dyspnea, as well as musculoskeletal and systemic manifestations. Photobiomodulation therapy (PBMT) with use of low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) is an electrophysical intervention that has been found to minimize or delay muscle fatigue. The aim of this study was to evaluate the acute effect of PBMT with combined use of lasers diodes, light-emitting diodes (LEDs), magnetic field on muscle performance, exercise tolerance, and metabolic variables during the 6-minute stepper test (6MST) in patients with COPD. Twenty-one patients with COPD (FEV1 46.3% predicted) completed the 6MST protocol over 2 weeks, with one session per week. PBMT/magnetic field or placebo (PL) was performed before each 6MST (17 sites on each lower limb, with a dose of 30 J per site, using a cluster of 12 diodes 4 × 905 nm super-pulsed laser diodes, 4 × 875 nm infrared LEDs, and 4 × 640 nm red LEDs; Multi Radiance Medical™, Solon, OH, USA). Patients were randomized into two groups before the test according to the treatment they would receive. Assessments were performed before the start of each protocol. The primary outcomes were oxygen uptake and number of steps, and the secondary outcome was perceived exertion (dyspnea and fatigue in the lower limbs). PBMT/magnetic field applied before 6MST significantly increased the number of steps during the cardiopulmonary exercise test when compared to the results with placebo (129.8 ± 10.6 vs 116.1 ± 11.5, p = 0.000). PBMT/magnetic field treatment also led to a lower score for the perception of breathlessness (3.0 [1.0–7.0] vs 4.0 [2.0–8.0], p = 0.000) and lower limb fatigue (2.0 [0.0–5.0] vs 4.0 [0.0–7.0], p = 0.001) compared to that with placebo treatment. This study showed that the combined application of PBMT and magnetic field increased the number of steps during the 6MST and decreased the sensation of dyspnea and lower limb fatigue in patients with COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Global Initiative for Chronic Obstructive Lung Disease (2003) Global strategy of the diagnosis, management and prevention of chronic obstructive pulmonary disease updated. National Institutes of Health and National Heart, Lung and Blood Institute. Eur Respir J 22:1–95

    Article  Google Scholar 

  2. Berton E, Antonucci R, Palange P (2001) Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Monaldi Arch Chest Dis 56(5):418–422

    CAS  PubMed  Google Scholar 

  3. Merriam Webster’s Collegiate Dictionary: An encyclopaedia Britannica Company (2003). 11th edn. Merriam-Webster Inc, Springfield

  4. Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R (2005) Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171(9):972–977

    Article  PubMed  Google Scholar 

  5. Belman MJ (1986) Exercise in chonic obstructive pulmonary disease. Clin Chest Med 7(4):585–597

    CAS  PubMed  Google Scholar 

  6. Gosselink R, Troosters T, Decramer M (1996) Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med 153(3):976–980

    Article  CAS  PubMed  Google Scholar 

  7. Serres I, Gautier V, Varray A, Préfaut C (1998) Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest 113(4):900–905

    Article  CAS  PubMed  Google Scholar 

  8. Redelmeier DA, Bayoumi AM, Goldstein RS, Guyatt GH (1997) Interpreting small differences in functional status: the six minute walk test in chronic lung disease patients. Am J Respir Crit Care Med 155(4):1278–1282

    Article  CAS  PubMed  Google Scholar 

  9. Puhan MA, Mador MJ, Held U, Goldstein R, Guyatt GH, Schünemann HJ (2008) Interpretation of treatment changes in 6-minute walk distance in patients with COPD. Eur Respir J 32(3):637–643

    Article  CAS  PubMed  Google Scholar 

  10. Holland AE, Hill CJ, Rasekaba T, Lee A, Naughton MT, McDonald CF (2010) Updating the minimal important difference for six-minute walk distance in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 91(2):221–225

    Article  PubMed  Google Scholar 

  11. Puhan MA, Chandra D, Mosenifar Z, Ries A, Make B, Hansel NN, Wise RA, Sciurba F (2011) National Emphysema Treatment Trial (NETT) research group. The minimal important difference of exercise tests in severe COPD. Eur Respir J 37(4):784–790

    Article  CAS  PubMed  Google Scholar 

  12. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166(1):111–117

    Article  Google Scholar 

  13. Holland AE, Rasekaba T, Fiore JF, Burge AT, Lee AL (2015) The 6-minute walk distance cannot be accurately assessed at home in people with COPD. Disabil Rehabil 37(12):1102–1106

    Article  PubMed  Google Scholar 

  14. Borel B, Fabre C, Saison S, Bart F, Grosbois J-M (2010) An original field evaluation test for chronic obstructive pulmonary disease population: the six-minute stepper test. Clin Rehabil 24(1):82–93

    Article  PubMed  Google Scholar 

  15. Coquart JB, Lemaître F, Castres I, Saison S, Bart F, Grosbois J-M (2015) Reproducibility and sensitivity of the 6-minute stepper test in patients with COPD. COPD 12(5):533–538

    Article  PubMed  Google Scholar 

  16. Grosbois J-M, Le Rouzic O, Monge E, Bart F, Wallaert B (2013) Comparison of home-based and outpatient, hospital-based, pulmonary rehabilitation in patients with chronic respiratory diseases. Rev Pneumol Clin 69(1):10–17

    Article  PubMed  Google Scholar 

  17. Grosbois JM, Gicquello A, Langlois C, Le Rouzic O, Bart F, Wallaert B, Chenivesse C (2015) Long term evaluation of home-based pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 10:2037–2044

    PubMed  PubMed Central  Google Scholar 

  18. Ihsan FR (2005) Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg 23(3):289–294

    Article  CAS  PubMed  Google Scholar 

  19. Oron U, Ilic S, De Taboada L, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 25(3):180–182

    Article  CAS  PubMed  Google Scholar 

  20. Passarella S (1989) He-Ne laser irradiation of isolated mitochondria. J Photochem Photobiol B 3(4):642–643

    Article  CAS  PubMed  Google Scholar 

  21. Coballase-Urrutia E, Navarro L, Ortiz JL, Verdugo-Díaz L, Gallardo JM, Hernández ME, Estrada-Rojo F (2018) Static magnetic fields modulate the response of different oxidative stress markers in a restraint stress model animal. Biomed Res Int 2018:3960408

  22. Wang D, Wang Z, Zhang L, Li Z, Tian X, Fang J, Lu Q, Zhang X (2018) Cellular ATP levels are affected by moderate and strong static magnetic fields. Bioelectromagnetics 39(5):352–360

    Article  CAS  PubMed  Google Scholar 

  23. Friedmann H, Lipovsky A, Nitzan Y, Lubart R (2009) Combined magnetic and pulsed laser fields produce synergistic acceleration of cellular electron transfer. Laser Ther 18(3):137–134

    Article  Google Scholar 

  24. de Oliveira AR, Vanin AA, Tomazoni SS, Miranda EF, Albuquerque-Pontes GM, De Marchi T, Dos Santos Grandinetti V, de Paiva PRV, Imperatori TBG, de Carvalho PTC, Bjordal JM, Leal-Junior ECP (2017) Pre-exercise infrared photobiomodulation therapy (810 nm) in skeletal muscle performance and postexercise recovery in humans: what is the optimal power output? Photomed Laser Surg 35(11):595–603

    Article  CAS  PubMed  Google Scholar 

  25. Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls Corsetti F, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532

    Article  PubMed  Google Scholar 

  26. Miranda EF, Leal-Junior EC, Marchetti PH, Dal Corso S (2014) Acute effects of light emitting diodes therapy (LEDT) in muscle function during isometric exercise in patients with chronic obstructive pulmonary disease: preliminary results of a randomized controlled trial. Lasers Med Sci 29(1):359–365

    Article  PubMed  Google Scholar 

  27. Tullberg M, Alstergren PJ, Ernberg MM (2003) Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain 105(1–2):89–96

    Article  PubMed  Google Scholar 

  28. Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51(2):129–135

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson DC, MacIntyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J (2005) Interpretative strategies for lung function tests. Eur Respir J 26(5):948–968

    Article  CAS  PubMed  Google Scholar 

  30. Pereira CAC, Barreto SP, Simões JG (1992) Valores de referência para espirometria em uma amostra da população brasileira adulta. J Pneumol 18:10–22

    Google Scholar 

  31. De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status and oxidative stress. Lasers Med Sci 27(1):231–236

    Article  PubMed  Google Scholar 

  32. Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, Dos Santos Grandinetti V, de Peaiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6):1967–1976

    Article  PubMed  Google Scholar 

  33. Miranda EF, de Oliveira LV, Antonialli FC, Vanin AA, de Carvalho PD, Leal-Junior EC (2015) Phototherapy with combination of super-pulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med Sci 30(1):437–443

    Article  PubMed  Google Scholar 

  34. Grosbois JM, Riquier C, Chehere B, Coquart J, Béhal H, Bart F, Wallaert B, Chenivesse C (2016) Six-minute stepper test: a valid clinical exercise tolerance test for COPD patients. Int J Chron Obstruct Pulmon Dis 11:657–663

    CAS  PubMed  PubMed Central  Google Scholar 

  35. American Thoracic Society; American College of Chest Physicians (2003) ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 167(2):211–277

    Article  Google Scholar 

  36. Powers SK, Howley ET (2015) Exercise physiology: theory and application to fitness and performance, 9th edn. McGraw-Hill, New York

    Google Scholar 

  37. Borg G (1990) Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health 16(Suppl 1):55–58

    Article  PubMed  Google Scholar 

  38. Kim HC, Mofarrahi M, Hussain SN (2008) Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 3(4):637–658

    PubMed  PubMed Central  Google Scholar 

  39. Miranda EF, Malaguti C, Corso SD (2011) Peripheral muscle dysfunction in COPD: lower limbs versus upper limbs. J Bras Pneumol 37(3):380–388

    Article  PubMed  Google Scholar 

  40. Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: systematic review with meta-analysis. Lasers Med Sci 30(2):925–939

    Article  PubMed  Google Scholar 

  41. Vanin AA, Verhagen E, Barboza SD, Costa LOP, Leal-Junior ECP (2018) Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med Sci 33(1):181–214

    Article  PubMed  Google Scholar 

  42. Leal-Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41(8):572–577

    Article  PubMed  Google Scholar 

  43. Rammaert B, Leroy S, Cavestri B, Wallaert B, Grosbois J-M (2011) Home-based pulmonary rehabilitation in idiopathic pulmonary fibrosis. Rev Mal Respir 28(7):e52–e57

    Article  CAS  PubMed  Google Scholar 

  44. Pinto HD, Vanin AA, Miranda EF, Tomazoni SS, Johnson DS, Albuquerque-Pontes GM, Junior AIO, Grandinetti VD, Casalechi HL, de Carvalho PT, Leal-Junior EC (2016) Photobiomodulation therapy improves performance and accelerates recovery of high-level rugby players in field test: a randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Cond Res 30(12):3329–3338

    Article  PubMed  Google Scholar 

  45. Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5):1091–1099

    Article  CAS  PubMed  Google Scholar 

  46. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95(2):89–92

    Article  CAS  PubMed  Google Scholar 

  47. Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de Carvalho Pde T, Leal-Junior EC (2015) Effect of pre- irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30(1):59–66

    Article  PubMed  Google Scholar 

  48. Leal-Junior EC (2015) Photobiomodulation therapy in skeletal muscle: from exercise performance to muscular dystrophies. Photomed Laser Surg 33(2):53–54

    Article  PubMed  PubMed Central  Google Scholar 

  49. Leal-Junior EC, Johnson DS, Saltmarche A, Demchak T (2014) Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial. Lasers Med Sci 29(6):1839–1847

    Article  PubMed  Google Scholar 

  50. de Paula Gomes CAF, Leal-Junior ECP, Dibai-Filho AV, de Oliveira AR, Bley AS, Biasotto-Gonzalez DA, de Tarso Camillo de Carvalho P (2018) Incorporation of photobiomodulation therapy into a therapeutic exercise program for knee osteoarthritis: a placebo-controlled, randomized, clinical trial. Lasers Surg Med 50(8):819–828

  51. de Paiva PR, Tomazoni SS, Johnson DS, Vanin AA, Albuquerque-Pontes GM, Machado CD, Casalechi HL, de Carvalho PT, Leal-Junior EC (2016 Dec) Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers Med Sci 31(9):1925–1933

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by research grants 2010/52404-0 from São Paulo Research Foundation, FAPESP (Professor Ernesto Cesar Pinto Leal-Junior), 310281/2017-2 from Brazilian Council of Science and Technology Development, CNPq (Professor Ernesto Cesar Pinto Leal-Junior). FAPESP and CNPq had no role in the planning of this study; they had no influence on study design, data collection and analysis, decision to publish, or preparation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Cesar Pinto Leal-Junior.

Ethics declarations

Competing interests

Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi-Radiance Medical (Solon, OH, USA), a phototherapy/photobiomodulation device manufacturer. The remaining authors declare that they have no conflict of interests.

Ethical approval

All experimental procedures were submitted and approved by the Research Ethics Committee of Nove de Julho University (process number 2100805) and registered at Clinical Trials.gov (NCT03639220).

Statement of informed consent

All patients signed an informed consent form prior to enrollment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, E.F., Diniz, W.A., Gomes, M.V.N. et al. Acute effects of photobiomodulation therapy (PBMT) combining laser diodes, light-emitting diodes, and magnetic field in exercise capacity assessed by 6MST in patients with COPD: a crossover, randomized, and triple-blinded clinical trial. Lasers Med Sci 34, 711–719 (2019). https://doi.org/10.1007/s10103-018-2645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2645-z

Keywords

Navigation