Skip to main content

Advertisement

Log in

A review of the mechanism of action of lasers and photodynamic therapy for onychomycosis

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Onychomycosis is one of the most common diseases in the field of dermatology. It refers to the fungal infection of the nail plate or nail bed with high incidence in the general population. The available treatment options for onychomycosis have limited use due to side effects, drug interactions, and contraindications, which necessitates the application of an alternative treatment for onychomycosis. In the recent years, lasers and photodynamic therapy (PDT) have been recognized as alternative treatment options. Most of the previous studies have found them to be safe and effective treatment modalities in this indication; however, the results varied greatly and the in vitro and in vivo outcomes are contradictory. In the present review, studies related to the mechanism of action of lasers and PDT for the treatment of onychomycosis will be discussed, with a focus on to find explanation to the contradictory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspiroza C, Blanca FC, Rezustab A et al (2011) Terapia fotodinámica aplicada al tratamiento de las onicomicosis. Presentación de un caso yrevisión de la literatura. Rev Iberoam Micol 28:191–3

    Article  Google Scholar 

  2. Grover C, Khurana A (2012) An update on treatment of onychomycosis. Mycoses 55:541–51

    Article  PubMed  Google Scholar 

  3. Gupta AK, Simpson FC (2012) New therapeutic options for onychomycosis. Expert Opin Pharmacother 13:1131–42

    Article  CAS  PubMed  Google Scholar 

  4. Sigurgeirsson B, Baran R (2014) The prevalence of onychomycosis in the global population—a literature study. J Eur Acad Dermatol Venereol 28:1480–1491

    Article  CAS  PubMed  Google Scholar 

  5. Gupta AK, Nakrieko KA (2015) Trichophyton rubrum DNA strain switching increases in onychomycosis patients failing antifungal treatments. Br J Dermatol 172:74–80

    Article  CAS  PubMed  Google Scholar 

  6. Pariser DM (2015) Efficacy and safety of onychomycosis treatments: an evidence-based overview. Semin Cutan Med Surg 34:S46–S50

    Article  Google Scholar 

  7. Bhatta AK, Huang X, Keyal U, Zhao JJ (2014) Laser treatment for onychomycosis: a review. Mycoses 57:734–740

    Article  PubMed  Google Scholar 

  8. Becker C, Bershow A (2013) Lasers and photodynamic therapy in the treatment of onychomycosis: a review of the literature. Dermatol Online J 19:19611–2

    PubMed  Google Scholar 

  9. Francuzik W, Fritz K, Salavastru C (2016) Laser therapies for onychomycosis—critical evaluation of methods and effectiveness. J Eur Acad Dermatol Venereol 30:936–42

    Article  CAS  PubMed  Google Scholar 

  10. Nijenhuis-Rosien L, Kleefstra N, Wolfhagen MJ et al (2015) Laser therapy for onychomycosis in patients with diabetes at risk for foot complications: study protocol for a randomized, double blind, controlled trial (LASER-1). Trials 22(16):108

    Article  Google Scholar 

  11. Bunert N, Homey B, Gerber PA (2013) Onychomycosis. Successful treatment with a 1064 nm Nd:YAG-Laser. Hautarzt 64:716–8

    Article  CAS  PubMed  Google Scholar 

  12. Kimura U, Takeuchi K, Kinoshita A et al (2012) Treating onychomycosis of the toenail: clinical efficacy of the sub-millisecond 1,064 nm Nd: YAG laser using a 5 mm spot diameter. J Drugs Dermatol 11:496–504

    CAS  PubMed  Google Scholar 

  13. Wanitphakdeedecha R, Thanomkitti K, Bunyaratavej S, Manuskiatti W (2016) Efficacy and safety of 1064-nm Nd:YAG laser in treatment of onychomycosis. J Dermatol Treat 27:75–9

    Article  Google Scholar 

  14. Harris DM, Mc Dowell BA, Strisower J (2009) Laser treatment for toenail fungus. Proc of SPIE, 7161:71610M1-M7

  15. Kozarev J, Mitrovica S (2009) Laser treatment of nail fungal infection. Berlin conference of the European Academy of Dermatology and Venereology

  16. Galvan Garcia HR (2014) Onychomycosis: 1064-nm Nd: YAG Q-switch laser treatment. J Cosmet Dermatol 13:232–235

    Article  PubMed  Google Scholar 

  17. Hochman LG (2011) Laser treatment of onychomycosis using a novel 0.65-millisecond pulsed Nd:YAG 1064-nm laser. J Cosmet Laser Ther 13:2–5

    Article  PubMed  Google Scholar 

  18. Xu Y, Miao X, Zhou B, Luo D (2014) Combined oral terbinafine and long-pulsed 1,064-nm Nd: YAG laser treatment is more effective for onychomycosis than either treatment alone. Dermatol Surg 40:1201–7

    Article  CAS  PubMed  Google Scholar 

  19. Hollmig ST, Rahman Z, Henderson MT et al (2014) Lack of efficacy with 1064-nm neodymium:yttrium-aluminum-garnet laser for the treatment of onychomycosis: a randomized, controlled trial. J Am Acad Dermatol 70:911–7

    Article  PubMed  Google Scholar 

  20. Kalokasidis K, Onder M, Trakatelli M et al (2013) The effect of Q-switched Nd:YAG 1064nm/532nm laser in the treatment of onychomycosis in vivo. Dermatol Res Pract 2013:379725

    PubMed  PubMed Central  Google Scholar 

  21. Ghavam SA, Aref S, Mohajerani E et al (2015) Laser irradiation on growth of trichophyton rubrum: an in vitro study. J Lasers Med Sci 6:10–16

    PubMed  PubMed Central  Google Scholar 

  22. Hees H, Raulin C, Bäumler W (2012) Laser treatment of onychomycosis: an in vitro pilot study. J Dtsch Dermatol Ges 10:913–918

    PubMed  Google Scholar 

  23. Vural E, Winfield HL, Shingleton AW et al (2008) The effects of laser irradiation on Trichophyton rubrum growth. Lasers Med Sci 23:349–353

    Article  PubMed  Google Scholar 

  24. Gupta AK, Ahmad I, Borst I, Summebrbell RC (2000) Detection of xanthomegnin in epidermal materials infected with Trichophyton rubrum. J Invest Dermatol 115:901–905

    Article  CAS  PubMed  Google Scholar 

  25. Kozarev J, Vižintin Z (2010) Novel laser therapy in treatment of onychomycosis. J Laser Health Acad 1:1–8

    Google Scholar 

  26. Paasch U, Mock A, Grunewald S, Bodendorf MO, Kendler M, Seitz AT, Simon JC, Nenoff P (2013) Antifungal efficacy of lasers against dermatophytes and yeasts in vitro. Int J Hyperth 29:544–50

    Article  Google Scholar 

  27. Allen JF (2003) Superoxide as an obligatory, catalytic intermediate in photosynthetic reduction of oxygen by adrenaline and dopamine. Antioxid Redox Signal 5:7–14

    Article  CAS  PubMed  Google Scholar 

  28. Kim YR, Lee YW, Choe YB, Ahn KJ (2015) Lack of antifungal effect of 1,064-nm long pulse Nd:YAG laser on the growth of Trichophyton rubrum. Lasers Med Sci 30:1811–3

    Article  PubMed  Google Scholar 

  29. Carney C, Cantrell W, Warner J et al (2013) Treatment of onychomycosis using a submillisecond 1064-nm neodymium:yttrium- aluminum-garnet laser. J Am Acad Dermatol 69:578–582

    Article  PubMed  Google Scholar 

  30. Zhang RN, Wang DK, Zhuo FL et al (2012) Long-pulse Nd: YAG 1064-nm laser treatment for onychomycosis. Chin Med J (Engl) 125:3288–3291

    Google Scholar 

  31. Gomez BL (2003) Nosanchuk JD Melanin and fungi. Curr Opin Infect Dis 16:91–96

    Article  CAS  PubMed  Google Scholar 

  32. Vila TV, Rozental S, de Sá Guimarães CM (2015) A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Lasers Med Sci 30:1031–9

    Article  PubMed  Google Scholar 

  33. Oliveira GB, Antonio JR, Antonio CR et al (2015) The associations of fractional CO2 laser 10600 nm and photodynamic therapy in the treatment of onychomycosis. An Bras Dermatol 90:468–471

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bhatta AK, Keyal U, Huang X, Zhao JJ (2016) Fractional carbon-dioxide (CO2) laser-assisted topical therapy for onycomycosis. J Am Acad Dermatol 74:916–23

    Article  PubMed  Google Scholar 

  35. Fedorova ND, Badger JH, Robson GD et al (2005) Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 6:177

    Article  PubMed  PubMed Central  Google Scholar 

  36. Beckham JT, Mackanos MA, Crooke C et al (2004) Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70. Photochem Photobiol 79:76–85

    Article  CAS  PubMed  Google Scholar 

  37. Landsman AS, Robbins AH, Angelini PF et al (2010) Treatment of mild, moderate, and severe onychomycosis using 870- and 930-nm light exposure. J Am Podiatr Med Assoc 100:166–177

    Article  PubMed  Google Scholar 

  38. Bornstein E, Hermans W, Gridley S et al (2009) Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem Photobiol 85:1364–1374

    Article  CAS  PubMed  Google Scholar 

  39. Harris F, Pierpoint L (2012) Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med Res Rev 32:1292–1327

    Article  CAS  PubMed  Google Scholar 

  40. Lee SH, Park MY, Ahn JY (2012) Photodynamic therapy with methyl 5-aminolevulinic acid for treatment of onychomycosis: the efficacy and safety. Korean J Med Mycol 17:8–16

    Article  Google Scholar 

  41. Paz-Cristobal MP, Gilaberte Y, Alejandre C et al (2014) In vitro fungicidal photodynamic effect of hypericin on Trichophyton spp. Mycopathologia 178:221–225. doi:10.1007/s11046-014-9797-6

    Article  CAS  PubMed  Google Scholar 

  42. Bhatta AK, Keyal U, Wang XL (2016) Photodynamic therapy for onychomycosis: A systematic review. Photodiagnosis Photodyn Ther 15:228–235

  43. Figueiredo Souza LW, Souza SV, Botelho AC (2014) Randomized controlled trial comparing photodynamic therapy based on methylene blue dye and fluconazole for toenail onychomycosis. Dermatol Ther 27:43–47

    Article  CAS  PubMed  Google Scholar 

  44. Silva AP, Kurachi C, Bagnato VS, Inada NM (2013) Fast elimination of onychomycosis by hematoporphyrin derivative-photodynamic therapy. Photodiagn Photodyn Ther 10:328–330

    Article  Google Scholar 

  45. Cronin L, Moffitt M, Mawad D et al (2014) An in vitro study of the photodynamic effect of rose bengal on Trichophyton rubrum. J Biophotonics 7:410–417

    Article  CAS  PubMed  Google Scholar 

  46. Wan TM, Lin JY (2014) Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 7:145–163

    PubMed  PubMed Central  Google Scholar 

  47. Smijs TGM, Haas NS, Lugtenburg J et al (2004) Photodynamic treatment of the dermatophyte Trichophyton rubrum and its microconidia with porphyrin photosensitizers. Photochem Photobiol 80:197–202

    Article  CAS  PubMed  Google Scholar 

  48. Kamp H, Tietz HJ, Lutz M et al (2005) Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses 48:101–107

    Article  CAS  PubMed  Google Scholar 

  49. da Silva AP, Chiandrone DJ, Tinta JW et al (2015) Development and comparison of two devices for treatment of onychomycosis by photodynamic therapy. J Biomed Opt 20:061109

    Article  PubMed  Google Scholar 

  50. Simmons BJ, Griffith RD, Falto-Aizpurua LA, Nouri K (2015) An update on photodynamic therapies in the treatment of onychomycosis. J Eur Acad Dermatol Venereol 29:1275–9

    Article  CAS  PubMed  Google Scholar 

  51. Dovigo LN, Pavarina AC, Ribeiro AP et al (2011) Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol 87:895–903

    Article  CAS  PubMed  Google Scholar 

  52. Mello R, Martínez-Ferrer J, Alcalde-Aragonés A et al (2011) Reactions at interfaces: oxygenation of n-butyl ligands anchored on silica surfaces with methyl (trifluoromethyl) dioxirane. J Org Chem 76:10129–10139

    Article  CAS  PubMed  Google Scholar 

  53. Zhu TC, Finlay JC (2008) The role of photodynamic therapy (PDT) physics. Med Phys 35:3127–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857

    Article  CAS  PubMed  Google Scholar 

  55. Bertoloni G, Zambotto F, Conventi L et al (1987) Role of specific cellular targets in the hematoporphyrin-sensitized photoinactivation of microbial cells. Photochem Photobiol 46:695–698

    Article  CAS  PubMed  Google Scholar 

  56. Baltazar L de M, Soares BM, Carneiro HC, et al. (2013) Photodynamic inhibition of Trichophyton rubrum: in vitro activity and the role of oxidative and nitrosative bursts in fungal death. J Antimicrob Chemother. 68: 354-361

  57. Ortiz AE, Avram MM, Wanner MA (2014) A review of lasers and light for the treatment of onychomycosis. Lasers Surg Med 46:117–24

    Article  PubMed  Google Scholar 

  58. Gupta AK, Simpson FC, Heller DF (2016) The future of lasers in onychomycosis. J Dermatol Treat 27:167–172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

There are no funding sources for this work.

Additional information

Anil Kumar Bhatta and Uma Keyal contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatta, A.K., Keyal, U., Wang, X. et al. A review of the mechanism of action of lasers and photodynamic therapy for onychomycosis. Lasers Med Sci 32, 469–474 (2017). https://doi.org/10.1007/s10103-016-2110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2110-9

Keywords

Navigation