Skip to main content

Advertisement

Log in

Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca2+] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca2+) stores. Blockade of Ca2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca2+-ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maisonpierre PC, Le Beau MM, Espinosa R 3rd, Ip NY, Belluscio L et al (1991) Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 10:558–568

    Article  CAS  PubMed  Google Scholar 

  3. Dong M, Wu Y, Fan Y, Xu M, Zhang J (2006) c-fos modulates brain-derived neurotrophic factor mRNA expression in mouse hippocampal CA3 and dentate gyrus neurons. Neurosci Lett 400:177–180

    Article  CAS  PubMed  Google Scholar 

  4. Imamura L, Hasegawa H, Kurashina K, Hamanishi A, Tabuchi A et al (2000) Repression of activity-dependent c-fos and brain-derived neurotrophic factor mRNA expression by pyrethroid insecticides accompanying a decrease in Ca(2+) influx into neurons. J Pharmacol Exp Ther 295:1175–1182

    CAS  PubMed  Google Scholar 

  5. Rola P, Doroszko A, Derkacz A (2014) The use of low-level energy laser radiation in basic and clinical research. Adv Clin Exp Med 23:835–842

    Article  PubMed  Google Scholar 

  6. Takhtfooladi MA, Sharifi D (2015) A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits. Lasers Med Sci 30:2319–2324

    Article  PubMed  Google Scholar 

  7. Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ (2002) Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med 31:216–222

    Article  PubMed  Google Scholar 

  8. Takhtfooladi MA, Jahanbakhsh F, Takhtfooladi HA, Yousefi K, Allahverdi A (2015) Effect of low-level laser therapy (685 nm, 3 J/cm(2)) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci 30:1047–1052

    Article  PubMed  Google Scholar 

  9. Wang CZ, Chen YJ, Wang YH, Yeh ML, Huang MH et al (2014) Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS One 9:e103348

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR (2014) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8:502–511

    Article  PubMed  Google Scholar 

  11. Gomes LE, Dalmarco EM, Andre ES (2012) The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model. Photomed Laser Surg 30:642–647

    Article  CAS  PubMed  Google Scholar 

  12. Paviolo C, Haycock JW, Cadusch PJ, McArthur SL, Stoddart PR (2014) Laser exposure of gold nanorods can induce intracellular calcium transients. J Biophotonics 7:761–765

    Article  CAS  PubMed  Google Scholar 

  13. Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakagami H, Kamata A, Nishimura H, Kasahara J, Owada Y et al (2005) Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur J Neurosci 22:2697–2707

    Article  PubMed  Google Scholar 

  15. Fukuchi M, Kirikoshi Y, Mori A, Eda R, Ihara D et al (2014) Excitatory GABA induces BDNF transcription via CRTC1 and phosphorylated CREB-related pathways in immature cortical cells. J Neurochem 131:134–146

    Article  CAS  PubMed  Google Scholar 

  16. Rosen LB, Ginty DD, Weber MJ, Greenberg ME (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12:1207–1221

    Article  CAS  PubMed  Google Scholar 

  17. Jeon SJ, Rhee SY, Seo JE, Bak HR, Lee SH et al (2011) Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Neurosci Res 69:214–222

    Article  CAS  PubMed  Google Scholar 

  18. Huang J, Ye Z, Hu X, Lu L, Luo Z (2010) Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 58:622–631

    PubMed  Google Scholar 

  19. Morgado-Valle C, Verdugo-Diaz L, Garcia DE, Morales-Orozco C, Drucker-Colin R (1998) The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell Tissue Res 291:217–230

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Yan X, Liu J, Li L, Hu X et al (2014) Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochem Int 75:96–104

    Article  CAS  PubMed  Google Scholar 

  21. Yan X, Liu J, Huang J, Huang M, He F et al (2014) Electrical stimulation induces calcium-dependent neurite outgrowth and immediate early genes expressions of dorsal root ganglion neurons. Neurochem Res 39:129–141

    Article  CAS  PubMed  Google Scholar 

  22. Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci 33:13505–13517

    Article  CAS  PubMed  Google Scholar 

  23. Liang J, Liu L, Xing D (2012) Photobiomodulation by low-power laser irradiation attenuates Abeta-induced cell apoptosis through the Akt/GSK3beta/beta-catenin pathway. Free Radic Biol Med 53:1459–1467

    Article  CAS  PubMed  Google Scholar 

  24. Feng J, Zhang Y, Xing D (2012) Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 24:1116–1125

    Article  CAS  PubMed  Google Scholar 

  25. Lallemend F, Lefebvre PP, Hans G, Rigo JM, Van de Water TR et al (2003) Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways. J Neurochem 87:508–521

    Article  CAS  PubMed  Google Scholar 

  26. Ulmann L, Rodeau JL, Danoux L, Contet-Audonneau JL, Pauly G et al (2009) Dehydroepiandrosterone and neurotrophins favor axonal growth in a sensory neuron-keratinocyte coculture model. Neuroscience 159:514–525

    Article  CAS  PubMed  Google Scholar 

  27. Roehm PC, Xu N, Woodson EA, Green SH, Hansen MR (2008) Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Mol Cell Neurosci 37:376–387

    Article  CAS  PubMed  Google Scholar 

  28. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheng LZ, Lu N, Zhang YQ, Zhao ZQ (2010) Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice. Mol Pain 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee ES, Ryu JH, Kim EJ, Kim GT, Cho YW et al (2013) Lamotrigine increases intracellular Ca(2+) levels and Ca(2+)/calmodulin-dependent kinase II activation in mouse dorsal root ganglion neurones. Acta Physiol (Oxf) 207:397–404

    Article  CAS  Google Scholar 

  31. Rohra DK, Saito SY, Ohizumi Y (2003) Functional role of ryanodine-sensitive Ca2+ stores in acidic pH-induced contraction in Wistar Kyoto rat aorta. Life Sci 72:1259–1269

    Article  PubMed  Google Scholar 

  32. Chen YS, Hsu SF, Chiu CW, Lin JG, Chen CT et al (2005) Effect of low-power pulsed laser on peripheral nerve regeneration in rats. Microsurgery 25:83–89

    Article  PubMed  Google Scholar 

  33. Akgul T, Gulsoy M, Gulcur HO (2014) Effects of early and delayed laser application on nerve regeneration. Lasers Med Sci 29:351–357

    Article  PubMed  Google Scholar 

  34. Wollman Y, Rochkind S, Simantov R (1996) Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells. Neurol Res 18:467–470

    Article  CAS  PubMed  Google Scholar 

  35. Rochkind S, El-Ani D, Nevo Z, Shahar A (2009) Increase of neuronal sprouting and migration using 780 nm laser phototherapy as procedure for cell therapy. Lasers Surg Med 41:277–281

    Article  PubMed  Google Scholar 

  36. Naeser MA, Hamblin MR (2011) Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg 29:443–446

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O et al (2003) Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922

    Article  CAS  PubMed  Google Scholar 

  38. Lan CC, Wu SB, Wu CS, Shen YC, Chiang TY et al (2012) Induction of primitive pigment cell differentiation by visible light (helium-neon laser): a photoacceptor-specific response not replicable by UVB irradiation. J Mol Med (Berl) 90:321–330

    Article  CAS  Google Scholar 

  39. Fields RD, Lee PR, Cohen JE (2005) Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 37:433–442

    Article  CAS  PubMed  Google Scholar 

  40. Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF et al (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50:897–909

    Article  CAS  PubMed  Google Scholar 

  41. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124

    Article  CAS  PubMed  Google Scholar 

  42. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 85:525–535

    Article  CAS  PubMed  Google Scholar 

  43. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726

    Article  CAS  PubMed  Google Scholar 

  44. Ou LC, Gean PW (2007) Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol 72:350–358

    Article  CAS  PubMed  Google Scholar 

  45. Tan J, Widjaja S, Xu J, Shepherd RK (2008) Cochlear implants stimulate activity-dependent CREB pathway in the deaf auditory cortex: implications for molecular plasticity induced by neural prosthetic devices. Cereb Cortex 18:1799–1813

    Article  PubMed  Google Scholar 

  46. Shieh PB, Hu SC, Bobb K, Timmusk T, Ghosh A (1998) Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron 20:727–740

    Article  CAS  PubMed  Google Scholar 

  47. Kamata A, Takeuchi Y, Fukunaga K (2006) Identification of the isoforms of Ca2+/calmodulin-dependent protein kinase II and expression of brain-derived neurotrophic factor mRNAs in the substantia nigra. J Neurochem 96:195–203

    Article  CAS  PubMed  Google Scholar 

  48. Zha XM, Bishop JF, Hansen MR, Victoria L, Abbas PJ et al (2001) BDNF synthesis in spiral ganglion neurons is constitutive and CREB-dependent. Hear Res 156:53–68

    Article  CAS  PubMed  Google Scholar 

  49. Staaf S, Maxvall I, Lind U, Husmark J, Mattsson JP et al (2009) Down regulation of TRPC1 by shRNA reduces mechanosensitivity in mouse dorsal root ganglion neurons in vitro. Neurosci Lett 457:3–7

    Article  CAS  PubMed  Google Scholar 

  50. Zhaleh H, Azadbakht M, Bidmeshki Pour A (2012) Possible involvement of calcium channels and plasma membrane receptors on Staurosporine-induced neurite outgrowth. Bosn J Basic Med Sci 12:20–25

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng JQ, Felder M, Connor JA, Poo MM (1994) Turning of nerve growth cones induced by neurotransmitters. Nature 368:140–144

    Article  CAS  PubMed  Google Scholar 

  52. Barbosa RI, Marcolino AM, de Jesus Guirro RR, Mazzer N, Barbieri CH et al (2010) Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci 25:423–430

    Article  PubMed  Google Scholar 

  53. Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171–185

    Article  PubMed  Google Scholar 

  54. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA et al (2010) Role of low-level laser therapy in neurorehabilitation. Pm R 2:S292–305

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Wei Hu, Li Liang, and Ruichen Wang for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jixian Qian or Honghui Sun.

Ethics declarations

All the experimental procedures for animals were conducted under a protocol reviewed and approved by the Committee on the Ethics of Animal Experiments of the Tangdu Hospital, Fourth Military Medical University.

Source of funding

This study was supported in part by the Natural Science Basic Research Project of Shaanxi Province (No. 2014JQ4115) and National Natural Science Foundation of China (No. 81401001; No. 81272073; No. 81300926).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Xiaodong Yan and Juanfang Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Liu, J., Zhang, Z. et al. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 32, 169–180 (2017). https://doi.org/10.1007/s10103-016-2099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-2099-0

Keywords

Navigation