Skip to main content

Advertisement

Log in

The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

During aging processes, there is a range of functional changes, where we can highlight the disease related to the central nervous system, such as Alzheimer disease and others forms of dementia. This study investigated the effects of transcranial light emitting diode (LED) on cerebral blood flow in healthy elderly women analyzed by transcranial Doppler ultrasound (TCD) of the right and left middle cerebral artery and basilar artery. Twenty-five noninstitutionalized elderly women (mean age 72 years old), with a cognitive status >24, were assessed using transcranial Doppler ultrasound on two separate occasions: pre-irradiation and post-transcranial LED therapy (TCLT). Prior to this, they answered two questionnaires: the perceived stress scale and the general health questionnaire. TCLT (627 nm, 70 mW/cm2, 10 J/cm2) was performed at four points of the frontal and parietal region for 30 s each, totaling 120 s two times per week for 4 weeks. Paired t-test results showed that there was a significant improvement after TCLT with increase in the systolic and diastolic velocity of the left middle cerebral artery (25 and 30 %, respectively) and basilar artery (up to 17 and 25 %), as well as a decrease in the pulsatility index and resistance index values of the three cerebral arteries analyzed (p < 0.05). TCD parameters showed improvement in the blood flow on the arteries analyzed. TCLT promoted a blood and vasomotor behavior of the basilar and middle cerebral arteries in healthy elderly women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  CAS  PubMed  Google Scholar 

  2. Gsell W, Sadeleer C, Marchalant Y, MacKenzie ET, Schumann P, Dauphin F (2000) The use of cerebral blood flow as an index of neuronal activity in functional neuroimaging: experimental and pathophysiological considerations. J Chem Neuroanat 20:215–224

    Article  CAS  PubMed  Google Scholar 

  3. Chen JJ, Rosas HD, Salat DH (2011) Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage 55:468–478

    Article  PubMed Central  PubMed  Google Scholar 

  4. Elias MF, D’Agostino RB, Elias PK, Wolf PA (1995) Neuropsychological test performance, cognitive functioning, blood pressure, and age: the Framingham Heart Study. Exp Aging Res 21:369–391

    Article  CAS  PubMed  Google Scholar 

  5. Farmer ME, Kittner SJ, Abbott RD, Wolz MM, Wolf PA, White LR (1990) Longitudinally measured blood pressure, antihypertensive medication use, and cognitive performance: the Framingham Study. J Clin Epidemiol 43:475–480

    Article  CAS  PubMed  Google Scholar 

  6. Okamoto Y, Yamamoto T, Kalaria RN et al (2012) Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes microinfarcts. Acta Neuropathol 123:381–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Akiyama H, Meyer JS, Mortel KF, Terayama Y, Thornby JI, Konno S (1997) Normal human aging: factors contributing to cerebral atrophy. J Neurol Sci 152:39–49

    Article  PubMed  Google Scholar 

  8. Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE, Acker JD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    Article  CAS  PubMed  Google Scholar 

  9. Suter OC, Sunthorn T, Kraftsik R, Straubel J, Darekar P, Khalili K, Miklossy J (2002) Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke 33:1986–1992

    Article  PubMed  Google Scholar 

  10. Desmet KD, Paz DA (2002) Corry et al. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24:121–128

    Article  Google Scholar 

  11. Naeser MA, Hamblin MR (2011) Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg 29:443–446

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lane N (2006) Cell biology: power games. Nature 443:901–903

    Article  CAS  PubMed  Google Scholar 

  13. Oron A, Oron U, Chen J et al (2006) Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37:2620–2624

    Article  PubMed  Google Scholar 

  14. Lapchak PA, Salgado KF, Chao CH, Zivin JA (2007) Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 148:907–914

    Article  CAS  PubMed  Google Scholar 

  15. Michalikova S, Ennaceur A, Van Rensberg R, Chazot PL (2008) Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light. Neurobiol Learn Mem 89:480–488

    Article  CAS  PubMed  Google Scholar 

  16. Oron A, Oron U, Streeter J (2007) Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma 24:651–656

    Article  PubMed  Google Scholar 

  17. Lampl Y, Zivin JA, Fisher M (2007) Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 38:1843–1849

    Article  PubMed  Google Scholar 

  18. Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR (2009) Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 5:46

    Article  PubMed Central  PubMed  Google Scholar 

  19. Brucki SMD, Nitrini R, Caramelli P, Bertolucci PHF, Okamoto IH (2003) Suggestions for utilization of the mini-mental state examination in Brazil. Arq Neuropsiquiatr 61:777–781

    Article  PubMed  Google Scholar 

  20. Luft CB, Sanches SO, Mazo GZ, Andrade A (2007) Brazilian version of the perceived stress scale: translation and validation for the elderly. Rev Saude Publica 4:606–615

    Google Scholar 

  21. Gouveia VV, Chaves SSS, Oliveira ICP, Dias MR, Gouveia RSV, Andrade PR (2003) The use of the GHQ-12 in a general population: a study of its construct validity. Psicologia: Teoria e Pesquisa 3:241–248

    Google Scholar 

  22. Alexandrov AV, Sloan MA, Wong LKS (2007) Practice standards for transcranial Doppler ultrasound: part I–test performance. J Neuroimaging 17:11–18

    Article  PubMed  Google Scholar 

  23. Sejdić E, Kalika D, Czarnek N (2013) An analysis of resting-state functional transcranial Doppler recordings from middle cerebral arteries. PLoS One 8:e55405

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kay DWK, Henderson AS, Scott R, Wilson J, Rickwood D, Grayson DA (1985) Dementia and depression among the elderly living in the Hobart community: the effect of the diagnostic criteria on the prevalence rates. Psychol Med 15:771–788

    Article  CAS  PubMed  Google Scholar 

  25. Nawashiro H, Wada K, Nakai K, Sato S (2012) Focal increase in cerebral blood flow after treatment with near-infrared light to the forehead in a patient in a persistent vegetative state. Photomed Laser Surg 30:231–233

    Article  CAS  PubMed  Google Scholar 

  26. Sperry R (1982) Some effects of disconnecting the cerebral hemispheres. Science 217:1223–1226

    Article  CAS  PubMed  Google Scholar 

  27. Hutsler J, Galuske RAW (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26:428–435

    Article  Google Scholar 

  28. Robertson LC, Lamb MR (1991) Neuropsychological contributions to theories of part/whole organization. Cogn Psychol 23:299–330

    Article  CAS  PubMed  Google Scholar 

  29. Knecht S, Dräger B, Deppe M, Bobe L, Lohmann H, Flöel A, Ringelstein EB, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518

    Article  PubMed  Google Scholar 

  30. Sejdic E, Kalika D, Czarnek N (2013) Na analysis of resting-state functional transcranial Doppler recordings from middle cerebral arteries. PLoS One 8:e55405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kelly RE, Chang JY, Scheinman NJ, Levin BE, Duncan RC, Lee SC (1992) Transcranial Doppler assessment of cerebral blood velocity during cognitive tasks. Stroke 23:9–14

    Article  Google Scholar 

  32. Li M, Huang H, Boninger ML, Sejdic E (2014) An analysis of cerebral blood flow from middle cerebral arteries during cognitive tasks via functional transcranial Doppler recordings. Neurosci Res 14:33–39

    Google Scholar 

  33. Wu Q, Xuan W, Ando T et al (2012) Low-level laser therapy of closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers Surg Med 44:218–226

    Article  PubMed Central  PubMed  Google Scholar 

  34. Akinyemi RO, Mukaetova-Ladinska EB, Attems J, Ihara M, Kalaria RN (2013) Vascular risk factors and neurodegeneration in ageing related dementia: Alzheimer’s disease and vascular dementia. Curr Azheimer Res 10:642–653

    Article  CAS  Google Scholar 

  35. Vicenzini E, Ricciardi MC, Altier M, Puccinelli F, Bonaffini N, Di Piero V, Lenzi GL (2007) Cerebrovascular reactivity in degenerative and vascular dementia: a transcranial Doppler study. Eur Neurol 58:84–89

    PubMed  Google Scholar 

  36. Roher AE, Garami Z, Tyas SL et al (2011) Transcranial Doppler ultrasound blood flow velocity and pulsatility index as systemic indicators for Alzheimer’s disease. Alzheimers Dement 7:445–455

    Article  PubMed Central  PubMed  Google Scholar 

  37. Staub D, Meyerhans A, Bundi B, Schmid HP, Frauchiger B (2006) Prediction of cardiovascular morbidity and mortality: comparison of the internal carotid artery resistive index with the common carotid artery intima-media thickness. Stroke 37:800–805

    Article  PubMed  Google Scholar 

  38. Lim MH, Cho YI, Jeong SK (2009) Homocysteine and pulsatility index of cerebral arteries. Stroke 40:3216–3220

    Article  CAS  PubMed  Google Scholar 

  39. Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31:1672–1678

    Article  CAS  PubMed  Google Scholar 

  40. Demidova-Rice TN, Salomatina EV, Yaroslavsky AN, Herman IM, Hamblin MR (2007) Low-level light stimulates excisional wound healing in mice. Lasers Surg Med 39:706–715

    Article  PubMed Central  PubMed  Google Scholar 

  41. Jagdeo JR, Adams LE, Brody NI, Siegel DM (2012) Transcranial red and near infrared light transmission in a cadaveric model. PLoS One 7:e47460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Samiolova KA, Bogacheva ON, Obolenskaya KD, Blinova MI, Kalmykova NV, Kuzminikh EV (2004) Enhancement of the blood growth promoting activity after exposure of volunteers to visible and infrared polarized light. Part I: stimulation of human keratinocyte proliferation in vitro. Photochem Photobiol Sci 3:96–101

    Article  Google Scholar 

  43. Uozumi Y, Nawashiro H, Sato S, Kawauchi S, Shima K, Kikuchi M (2010) Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation. Lasers Surg Med 42:566–576

    Article  PubMed  Google Scholar 

  44. Ball KA, Castello PR, Poyton RO (2011) Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: implications for phototherapy. J Photochem Photobiol B 102:182–191

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka K (1996) Is nitric oxide really important for regulation of the cerebral circulation? Yes or no? Keio J Med 45:14–27

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of the present study would like to thank Dr. Marcos Antônio Dias and the Hospital Evangélico de Londrina for assistance in performing the transcranial Doppler ultrasound examinations and Dr. Carlos M. Omura and Luciana Guandeline for assisting in the recruitment and scheduling of the volunteers that participated in the study.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afonso S. I. Salgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, A.S.I., Zângaro, R.A., Parreira, R.B. et al. The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med Sci 30, 339–346 (2015). https://doi.org/10.1007/s10103-014-1669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1669-2

Keywords

Navigation