Skip to main content

Advertisement

Log in

Carbon capture and storage using coal fly ash with flue gas

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Rising CO2 emissions call for actions to urgently address climate change and its impacts. To avoid the harmful consequences of climate change, limiting anthropogenic emissions of CO2 are a sensible response recognized by the global scientific community. Carbon capture and storage technologies are an integral part of the climate change mitigation portfolio. Among the various technologies, mineral carbonation shows promising potential as it is safer and offers a permanent solution for carbon capture and storage in the form of solid carbonates. In this regard, direct mineral carbonation of alkaline solid residues is viewed with global interest as they offer permanent and leakage-free storage of CO2. In this research work, CO2 sequestration using Indian coal fly ash (class F type- CaO < 10%) has been studied through the direct mineral carbonation process using flue gas concentration of CO2. Response surface methodology was used to design the carbonation experiments through gas–solid and aqueous routes. Aqueous carbonation of coal fly ash at optimum conditions (temperature-61.6 °C, pressure-48.7 bar, liquid/solid ratio-13.35, reaction time-50 min) resulted in a reduction of about 23% in the concentration of CO2. The waste exhibited a maximum sequestration capacity of 50.72 g of CO2/kg under aqueous carbonation and 20.03 g of CO2/kg under gas–solid carbonation. Both temperature and pressure were found to be significant factors impacting the gas–solid carbonation process. In aqueous carbonation, temperature and liquid/solid ratio were the significant factors. The carbonation process was evidenced using Fourier-transform-infrared spectroscopy, X-ray diffraction, and scanning electron microscope studies. The results suggest that Indian coal fly ash could be considered a potential feedstock for sequestration of CO2 with flue gas and requires further improvement for large-scale implementations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alcoa (2012) Long term residue management strategy- Kwinana. Available online at: https://www.alcoa.com/australia/en/pdf/kwinana_refinery_ltrms_report_2012.pdf

  • Altiner M (2018) Use of direct gas-solid carbonation process for fixation of CO2 as mineral carbonates in Turkish fly ashes. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2018.1509071

    Article  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology as a tool optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  Google Scholar 

  • Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38(2):302–320

    Article  CAS  Google Scholar 

  • Central Electricity Authority (CEA) 2020 Annual report 2019–20, Government of India, Ministry of Power, New Delhi, January, 2020

  • Cheng SY, Liu YZ, Qi GS (2020) Experimental study of CO2 capture enhanced by coal fly ash-synthesized NH2-MCM-41 coupled with high gravity technology. Chem Eng J 400:125946

    Article  CAS  Google Scholar 

  • Chiang PC, Pan SY (2017) System optimization. In: Chiang PC, Pan SY (eds) Carbon dioxide mineralization and utilization. Springer, Singapore, pp 403–439

    Chapter  Google Scholar 

  • Cwik A, Casanova I, Rausis K, Koukouzas N, Zarębska K (2018) Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants. J Clean Prod 202:1026–1034

    Article  CAS  Google Scholar 

  • Dananjayan RRT, Palanivelu K, Ramachandran A (2016) Direct mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod 112:4173–4182

    Article  Google Scholar 

  • Demirel M, Kayan B (2012) Application of response surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation. Int J Ind Chem 3:24

    Article  Google Scholar 

  • Dilmore R, Lu P, Allen D, Soong Y, Hedges S, Fu JK, Dobbs CL, Degalbo A, Zhu C (2008) Sequestration of CO2 in mixtures of bauxite residue and saline wastewater. Energy Fuel 22(1):343–353

    Article  CAS  Google Scholar 

  • Grace MN, Wilson GM, Leslie PF (2012) Statistical testing of input factors in the carbonation of brine impacted fly ash. J Environ Sci Heal A 47:245–259

    Article  CAS  Google Scholar 

  • Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC (2009) Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater 168:31–37

    Article  CAS  Google Scholar 

  • Indian Network for Climate Change Assessment (INCCA) (2010) Greenhouse gas emissions 2007. Ministry of Environment and Forests, India

  • Intergovernmental Panel on Climate Change (IPCC) (2014) Summary for policymakers. In: Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • International Energy Agency (IEA) (2019) Global energy and CO2 status report 2019. OECD Publishing

  • Irfan MF, Hossain SMZ, Tariq I, Khan NA, Tawfeeqi A, Goeva A, Wael M (2020) Modeling and optimization of aqueous mineral carbonation for cement kiln dust using response surface methodology integrated with box-behnken and central composite design approaches. Mining Metall Explor 37:1367–1383

    Google Scholar 

  • Jaschik J, Jaschik M, Warmuzinski K (2016) The utilisation of fly ash in CO2 mineral carbonation. Chem Process Eng 37(1):29–39

    Article  CAS  Google Scholar 

  • Ji L, Yu H, Wang X, Grigore M, French D, Gözükara YM, Yu J, Zenga M (2017) CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal. Fuel Process Technol 156:429–437

    Article  CAS  Google Scholar 

  • Ji L, Yu H, Zhang R, French D, Grigore M, Yu B, Wang X, Yu J, Zhao S (2019) Effects of fly ash properties on carbonation efficiency in CO2 mineralisation. Fuel Process Technol 188:79–88

    Article  CAS  Google Scholar 

  • Johnston M, Clark MW, McMahon P, Ward N (2010) Alkalinity conversion of bauxite refinery residues by neutralization. J Hazard Mater 182:710–715

    Article  CAS  Google Scholar 

  • Kim JH, Kwon WT (2019) Semi-dry carbonation process using fly ash from solid refused fuel power plant. Sustainability 11(3):908

    Article  CAS  Google Scholar 

  • Lackner KS, Wendt CH, Butt DP et al (1995) Carbon dioxide disposal in carbonate minerals. Energy 20:1153–1170. https://doi.org/10.1016/0360-5442(95)00071-N

    Article  CAS  Google Scholar 

  • Liu W, Su S, Xu K, Chen Q, Xu J, Sun Z, Wang Y, Hu S, Wang X, Xue Y, Xiang J (2018) CO2 sequestration by direct gasesolid carbonation of fly ash with steam addition. J Clean Prod 178:98–107

    Article  CAS  Google Scholar 

  • Monasterio-Guillota L, Alvarez-Lloret P, Ibañez-Velasco A, Fernandez-Martinez A, Ruiz-Agudo E, Rodriguez-Navarroa C (2020) CO2 sequestration and simultaneous zeolite production by carbonation of coal fly ash: impact on the trapping of toxic elements. J CO2 Util 40:101263

    Article  Google Scholar 

  • Montes-Hernandez G, Perez-Lopez R, Renard F, Nietob JM, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161:1347–1354

    Article  CAS  Google Scholar 

  • Montes-Hernandez G, Pommerol A, Renard F, Beck P, Quirico E, Brissaud O (2010) In situ kinetic measurements of gas-solid carbonation of Ca(OH)2 by using an infrared microscope coupled to a reaction cell. Chem Eng J 161:250–256

    Article  CAS  Google Scholar 

  • Muriithi GN, Gitari MW, Petrik LF (2009) Brine remediation using fly ash and accelerated carbonation. In: International mine water conference, Proceedings ISBN Number: 978-0-9802623-5-3, 19th–23rd October 2009, Pretoria, South Africa

  • Muriithi GN, Petrik LF, Fatoba O, Gitari WM, Doucet FJ, Nel J, Nyale SM, Chuks PE (2013) Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. J Environ Manage 127:212–220

    Article  CAS  Google Scholar 

  • Nyambura MG, Mugera GW, Felicia PL, Gathura NP (2011) Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage 92:655–664

    Article  CAS  Google Scholar 

  • Pan SY, Chang EE, Chiang PC (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791

    Article  CAS  Google Scholar 

  • Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42(6):2311–2320

    Article  Google Scholar 

  • Perez-Lopez R, Montes-Hernandez G, Nieto JM, Renard F, Charlet L (2008) Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere. Appl Geochem 23(8):2292–2300

    Article  CAS  Google Scholar 

  • Ramme BW, Naik TR, Kraus RN (2010) An investigation of CO2 sequestration through mineralization. In: Second international conference on sustainable construction materials and technologies. June 28th–30th 2010. Universita Politecnica delle Marche, Ancona, Italy. ISBN: 978-1-4507-1490-7

  • Rao A, Anthony EJ, Jia L, Macchi A (2007) Carbonation of FBC ash by sonochemical treatment. Fuel 86:2603–2615

    Article  CAS  Google Scholar 

  • Reddy KJ, Weber H, Bhattacharyya P, Argyle M, Taylor D, Christensen M, Foulke T, Fahlsing P (2010) Instantaneous capture and mineralization of flue gas carbon dioxide: pilot scale study. Nat Proc. https://doi.org/10.1038/npre.2010.5404.1

    Article  Google Scholar 

  • Reddy KJ, John S, Weber H, Argyle MD, Bhattacharyya P, Taylor DT, Christensen M, Foulkec T, Fahlsing P (2011) Simultaneous capture and mineralization of coal combustion, flue gas carbon dioxide (CO2). Energy Procedia 4:1574–1583

    Article  CAS  Google Scholar 

  • Reynolds B, Reddy KJ, Argyle MD (2014) Field application of accelerated mineral carbonation. Minerals 4:191–207

    Article  Google Scholar 

  • Said A, Laukkanen T, Järvinen M (2016) Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Appl Energy 177:602–611

    Article  CAS  Google Scholar 

  • Saran RK, Arora V, Yadav S (2018) CO2 sequestration by mineral carbonation: a review. Glob Nest J 20:497–503

    Article  Google Scholar 

  • Soong Y, Fauth DL, Howard BH, Jones JR, Harrison DK, Goodman AL, Gray ML, Frommell EA (2006) CO2 sequestration with brine solution and fly ashes. Energy Convers Manage 47:1676–1685

    Article  CAS  Google Scholar 

  • Tiwari SK, Giri BS, Thivaharan V, Srivastava AK, Kumar S, Singh RP, Kumar R, Singh RS (2020) Sequestration of simulated carbon dioxide (CO2) using churning cementations waste and fly-ash in a thermo-stable batch reactor (TSBR). Environ Sci Pollut Res 27:27470–27479

    Article  CAS  Google Scholar 

  • Uibu M, Kuusik R, Andreas L, Kirsimae K (2011) The CO2 binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale and steel slag. Energy Procedia 4:925–932

    Article  CAS  Google Scholar 

  • Ukwattage NL, Ranjith PG, Wang SH (2013) Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation. Energy 52:230–236

    Article  CAS  Google Scholar 

  • Ukwattage NL, Ranjith PG, Yellishetty M, Bui HH, Xu T (2015) A laboratory scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod 103:665–674

    Article  CAS  Google Scholar 

  • Ukwattage NL, Ranjith PG, Perera MSA (2016) Effect of accelerated carbonation on the chemical properties and leaching behaviour of Australian coal fly ash, to improve its use as a compost amendment. Environ Earth Sci 75:1398

    Article  Google Scholar 

  • USAID (2018) Greenhouse Gas Emissions in India. Available online at: https://www.climatelinks.org/sites/default/files/asset/document/India%20GHG%20Emissions%20Factsheet%20FINAL.pdf

  • Veetil SP, Hitch M (2020) Recent developments and challenges of aqueous mineral carbonation: a review. Int J Environ Sci Technol 17:4359–4380

    Article  CAS  Google Scholar 

  • Yan F, Jiang J, Liu N, Gao Y, Meng Y, Li K, Chen X (2018) Green synthesis of mesoporous γ-Al2O3 from coal fly ash with simultaneous on-site utilization of CO2. J Hazard Mater 359:535–543

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to “Department of Science and Technology” (DST), New Delhi, India for financial support. (Ref N0.DST/IS-STAC/CO2-SR-56/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamilselvi Dananjayan Rushendra Revathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathy, T.D.R., Ramachandran, A. & Palanivelu, K. Carbon capture and storage using coal fly ash with flue gas. Clean Techn Environ Policy 24, 1053–1071 (2022). https://doi.org/10.1007/s10098-021-02210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-021-02210-z

Keywords

Navigation