Skip to main content

Advertisement

Log in

Effectiveness of energy efficiency improvements in the context of energy subsidy policies

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Malaysia, as one of the top energy subsidizing countries, has announced to remove energy subsidies necessarily, not only to reduce energy consumption and the government budget deficit but also to improve overall efficiency and air quality. Therefore, this study evaluates the impacts of rationalizing energy subsidy and its energy efficiency improvement during 2010–2030 using a dynamic recursive computable general equilibrium model. Results revealed that reducing energy subsidies decreases energy consumption and emissions of all air pollutants. While the economic performance of the country improves in the long run due to stimulation in capital demand and investment, it reduces in the short run. Energy efficiency also improves by 1.1% and 2.3%, in the short run, in response to a reduction of 10% and 100% in energy subsidies, respectively. Energy efficiency improvements decrease the negative effects of pure subsidy policies on real GDP, trade, investment, and household consumption. The efficiency improvement policies also are effective in reducing more level of the rebound effect and lead to more energy saving in the economy, particularly in the petroleum products sector. The impacts on the rebound effect also differ across economic sectors. The results of this study provide new insights for energy subsidy policy and energy efficiency and suggest that additional tools and policies are required for improving the energy efficiency caused by phasing out energy subsidies.

Graphic abstract

Malaysia, as one of the top energy subsidized countries, attempts to reduce the level of energy subsidies over time and, consequently, decline the use of fossil fuels in the economy. Therefore, this study analyzes the impacts of different subsidy reform policy on energy efficiency and, consequently, on economic and environmental performance and rebound effect of Malaysia by a recursive dynamic computable general equilibrium model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adopted from Solaymani and Kari (2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Constant Elasticity of Transformation (CET).

References

  • Acharya RH, Sadath AC (2017) Implications of energy subsidy reform in India. Energy Policy 102:453–462

    Article  Google Scholar 

  • Akinyemi O, Alege PO, Ajayi PO, Okodua H (2017) Energy pricing policy and environmental quality in Nigeria: a dynamic computable general equilibrium approach. Int J Energy Econ Policy 7(1):268–276

    Google Scholar 

  • AlShehabi OH (2012) Energy and labour reform: evidence from Iran. J Policy Model 34(3):441–459

    Article  Google Scholar 

  • Asian Development Bank (2015) Fossil fuel subsidies in Indonesia: trends, impacts, and reforms. Asian Development Bank, Mandaluyong City. https://www.adb.org/sites/default/files/publication/175444/fossil-fuel-subsidies-indonesia.pdf

  • Avagyan AB (2018) Algae to energy and sustainable development. Technologies, resources, economics and system analyses. New design of global environmental policy and live conserve industry. Amazon, ISBN-13: 978-1718722552, ISBN-10: 1718722559

  • Avagyan AB, Singh B (2019) Biodiesel: feedstocks, technologies, economics and barriers assessment of environmental impact in producing and using chains. ISBN: 978-981-13-5746-6

  • Barkhordar ZA, Samaneh F, Siamak S (2018) The role of energy subsidy reform in energy efficiency enhancement: lessons learnt and future potential for Iranian industries. J Clean Prod 197(1):542–550

    Article  Google Scholar 

  • Bye B, Fæhn T, Rosnes O (2018) Residential energy efficiency policies: costs, emissions and rebound effects. Energy 143:191–201

    Article  Google Scholar 

  • Clements B, Jung H-S, Gupta S (2007) Real and distributive effects of petroleum price liberalization: the case of Indonesia. Dev Econ 45(2):220–237

    Article  Google Scholar 

  • Coady D, Parry I, Le N-P, Shang B (2019) Global fossil fuel subsidies remain large: an update based on country-level estimates. IMF working paper WP/19/89.

  • Cockburn J, Robichaud V, Tiberti L (2018) Energy subsidy reform and poverty in Arab countries: a comparative CGE-microsimulation analysis of Egypt and Jordan. Rev Income Wealth 64(S1):S248–S273

    Google Scholar 

  • Feng K, Klaus H, Yu L, Estefanía M, Adrien V-S (2018) Managing the distributional effects of energy taxes and subsidy removal in Latin America and the Caribbean. Appl Energy 225:424–436

    Article  Google Scholar 

  • Glomm G, Jung J (2015) A macroeconomic analysis of energy subsidies in a small open economy. Econ Inq 53(4):1783–1806

    Article  Google Scholar 

  • Hanley ND, McGregor PG, Swales JK, Turner K (2006) The impact of a stimulus to energy efficiency on the economy and the environment: a regional computable general equilibrium analysis. Renew Energy 31:161–171

    Article  Google Scholar 

  • He YX, Liu YY, Du M, Zhang JX, Pang YX (2015) Comprehensive optimisation of China’s energy prices, taxes and subsidy policies based on the dynamic computable general equilibrium model. Energy Convers Manag 98:518–532

    Article  Google Scholar 

  • International Energy Agency (IEA) (2012) World energy outlook: impact of high oil prices on the economy. p 5. http://www.iea.org/media/impact_of_high_oil_prices.pdf

  • Khalid SA, Salman V (2020) Welfare impact of electricity subsidyreforms in Pakistan: a micro model study. Energy Policy 137:111097

    Article  Google Scholar 

  • Li K, Jiang Z (2016) The impacts of removing energy subsidies on economy-wide rebound effects in China: an input-output analysis. Energy Policy 98:62–72

    Article  Google Scholar 

  • Li K, Lin B (2015) How does administrative pricing affect energy consumption and CO2 emissions in China? Renew Sustain Energy Rev 42:952–962

    Article  Google Scholar 

  • Li H, Bao Q, Ren X, Xie Y, Ren J, Yang Y (2017a) Reducing rebound effect through fossil subsidies reform: a comprehensive evaluation in China. J Clean Prod 141:305–314

    Article  Google Scholar 

  • Li Y, Xunpeng S, Bin S (2017b) Economic, social and environmental impacts of fuel subsidies: a revisit of Malaysia. Energy Policy 110:51–61

    Article  CAS  Google Scholar 

  • Li F, Xie J, Wang W (2019) Incentivizing sustainable development: the impact of a recent policy reform on electricity production efficiency in China. Sustain Dev 27(4):70–780

    Google Scholar 

  • Lin B, Liu X (2013) Electricity tariff reform and rebound effect of residential electricity consumption in China. Energy 59:240–247

    Article  Google Scholar 

  • Lockwood M (2015) Fossil fuel subsidy reform, rent management and political fragmentation in developing countries. New Polit Econ 20(4):475–494

    Article  Google Scholar 

  • Magné B, Jean C, Rob D (2014) Global implications of joint fossil fuel subsidy reform and nuclear phase-out: an economic analysis. Clim Change 123(3–4):677–690

    Article  Google Scholar 

  • Mahinizadeh M, Feizpour MA, Abedi M (2017) Analysis of electricity efficiency in Iranian manufacturing industries with regard to subsidies reform. J Iran Energy Econ 6(22):165–203

    Google Scholar 

  • Manzoor D, Shahmoradi A, Haqiqi I (2012) An analysis of energy price reform: a CGE approach. OPEC Energy Rev 36(1):35–54

    Article  Google Scholar 

  • Martínez-Moya J, Vazquez-Paja B, Jose AGM (2019) Energy efficiency and CO2 emissions of port container terminal equipment: evidence from the Port of Valencia. Energy Policy 131:312–319

    Article  Google Scholar 

  • Mills E (2017) Global kerosene subsidies: an obstacle to energy efficiency and development. World Dev 99:463–480

    Article  Google Scholar 

  • Ministry of Economic Affairs Malaysia (2019) Socioeconomic Statistics. Ministry of Economic Affairs Malaysia, Putrjaya, Malaysia

  • Oh TH, Md H, Jeyraj S, Siew CT, Shing CC (2018) Energy policy and alternative energy in Malaysia: issues and challenges for sustainable growth—an update. Renew Sustain Energy Rev 81(2):3021–3031

    Article  Google Scholar 

  • Oktaviani R, Hakim DB, Sahara D, Siregar H (2007) Impact of a lower oil subsidy on Indonesian macroeconomic performance, agricultural sector and poverty incidences: a recursive dynamic computable general equilibrium analysis (December 2007). MPIA working paper no. 2007-28. https://doi.org/10.2139/ssrn.1086380

  • Qin Q, Li X, Li L, Wei Z, Yi-Ming W (2017) Air emissions perspective on energy efficiency: an empirical analysis of China’s coastal areas. Appl Energy 185(1):604–614

    Article  CAS  Google Scholar 

  • Roos EL, Adams PD (2020) The economy-wide impact of subsidy reform: a CGE analysis 19(S1):s18–s38

    Google Scholar 

  • Sarrakh R, Suresh R, Subashini S, Sabah M (2020) Impact of subsidyreform on the kingdom of Saudi Arabia’s economy and carbon emissions. Energy Strategy Rev 28:100465

    Article  Google Scholar 

  • Schaffitzel F, Jakob B, Soria R, Vogt-Schilb A, Ward H (2019) Can government transfers make energy subsidy reform socially acceptable? A case study on Ecuador. Inter-American Development Bank (IDB), working paper series, 1026

  • Solaymani S (2016) Impacts of energy subsidy reform on poverty and income inequality in Malaysia. Qual Quant 50(6):2707–2723

    Article  Google Scholar 

  • Solaymani S (2020) Energy subsidy reform evaluation research-review in Iran. Science and Technology, Greenhouse Gases. (Forthcoming)

  • Solaymani S, Kari F (2013) Environmental and economic effects of high petroleum prices on transport sector. Energy 60:435–441

    Article  Google Scholar 

  • Solaymani S, Kari F (2014) Impacts of energy subsidy reform on the Malaysian economy and transportation sector. Energy Policy 70:115–125

    Article  Google Scholar 

  • Solaymani S, Kari F, Hazly Zakaria R (2014) Evaluating the role of subsidy reform in addressing poverty levels in Malaysia: a CGE poverty framework. J Dev Stud 50(4):556–569

    Article  Google Scholar 

  • Solaymani S, Kardooni R, Kari F, Yusoff SB (2015a) Economic and environmental impacts of energy subsidy reform and oil price shock on the Malaysian transport sector. Travel Behav Soc 2(2):65–77

    Article  Google Scholar 

  • Solaymani S, Najafi SMB, Kari F, Satar NBM (2015b) Aggregate and regional demand for electricity in Malaysia. J Energy South Afr 26(1):46–54

    Article  Google Scholar 

  • Sovacool BK (2017) Reviewing, reforming, and rethinking global energy subsidies: towards a political economy research agenda. Ecol Econ 135:150–163

    Article  Google Scholar 

  • Timilsina GR, Pargal S (2020) Economics of energysubsidyreforms in Bangladesh. Energy Policy 142:111539

    Article  Google Scholar 

  • Wang X, Lin B (2017) Impacts of residential electricity subsidy reform in China. Energy Eff 10(2):499–511

    Article  Google Scholar 

  • Wei T, Liu Y (2017) Estimation of global rebound effect caused by energy efficiency improvement. Energy Econ 66:27–34

    Article  Google Scholar 

  • Whitley S, van der Burg L (2015) Fossil fuel subsidy reform: from rhetoric to reality. New Climate Economy, London and Washington, DC. http://newclimateeconomy.report/misc/working-papers

  • Ying LS, Harun M (2019) The impact of removing fuel subsidies on domestic outputs in Malaysia. Int J Acad Res Bus Soc Sci 9(3):641–653

    Google Scholar 

  • Yusma N, Bekhet HA (2016) Impacts of energy subsidy reforms on the industrial energy structures in the Malaysian economy: a computable general equilibrium approach. Int J Energy Econ Policy 6(1):88–97

    Google Scholar 

Download references

Acknowledgement

Authors confirm that there is no any funding from any organizations for our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Solaymani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Model specification

Appendix A: Model specification

Sets

  

i

Sectors

(1,2, …, 25)

f

Factors of production

(Labor, capital and energy)

h

Households

(Rural and urban)

br

Lending institutions

(Domestic, Foreign)

ie(i)

Export sectors

 

ien(i)

Non-export sectors

 

TP

Simulation experiments

(SAM2010, 2010 * 2030)

TFUT(TP)

Future Time Periods

(2010 * 2030)

T(TP)

Current experiment

 

P

Pollutants

(PM, SO2, NOx, CO, CH4,N2O,CO2)

E1(i)

Energy sectors

/ngs, col, mot, dis, ful, lpg, opt, ele/

FL(i)

Fuels sectors

/ngs, col, mot, dis, ful, opt, lpg/

EL(i)

Electricity sector

/eLe/

NEL(i)

Nonelectricity sectors

/ngs, col, mot, dis, ful, lpg, opt/

NG(I)

Natural

Gas/NGS/

PT(I)

Petroleum products

/mot, dis, ful, opt, lpg/

E2(i)

Non-energy sectors

/pad, fod, veg, fru, rub, pal, liv, frs, fis, oag, min, fdp, tex, ind, trn, fin, svc/Alias (i,j)

Lc(f)

Labor and capital

 

Alias

 

(E1,E1P)

Alias

 

(E2,E2P),(NG,NGP)

Alias

 

(F,FP),(FL,FLP)

Equations

 

Price block equations

 

(1)

\({\text{PM}}_{i} = {\text{PWM}_{i}} . \, \left( {1 + {\text{tm}}_{i} } \right).{\text{EXR}}\)

Domestic prices of import goods

(2)

\({\text{PE}}_{i} = {\text{PWE}}_{i} . \, \left( {1 - {\text{te}}_{i} } \right).{\text{EXR}}\)

Domestic prices of export goods

(3)

\({\text{PQ}}_{i} = \left( {{\text{PD}}_{i} .D_{i} + {\text{ PM}}_{i} .M_{i} } \right)/Q_{i}\)

Average price of composite goods Q

(4)

\({\text{PX}}_{i} = \left( {{\text{PD}}_{i} .D_{i} + {\text{ PE}}_{i} .E_{i} } \right)/X_{i}\)

Average price of sectoral output X

(5)

\({\text{PV}}_{i} = \frac{{\left[ {{\text{PX}}_{i} .X_{i} .(1 - ({\text{tx}}_{i} - {\text{subsh}}_{i} )) - \sum\limits_{j} {{\text{io}}_{ji} .X_{i} .} {\text{PQ}}_{i} } \right]}}{{{\text{KL}}_{i} }}\)

Value added price equation included subsidies

(6)

\({\text{PEKL}}_{i} = \left( {{\text{PEN}}_{i} .{\text{EN}}_{i} + {\text{PV}}_{i} .{\text{KL}}_{i} } \right)/{\text{EKL}}_{i}\)

Price of factor of production (labor, capital and energy)

(6)

x \({\text{PEN}}_{i} = \left( {{\text{PELEC}}_{i} .{\text{ELEC}}_{i} + {\text{PFUL}}_{i} .{\text{FUL}}_{i} } \right)/{\text{EN}}_{i}\)

Price of energy

(8)

\({\text{PNEN}}_{i} = \sum\limits_{e2p} {{\text{ane}}_{e2p,i} .{\text{PQ}}_{e2p} }\)

Price of non-energy commodities

(9)

PELECi = PQele

Price of Electricity

(10)

\({\text{PK}}_{i} = \mathop \sum \limits_{j} {\text{ccmat}}_{ji} .{\text{PQ}}_{j}\)

Capital prices equation

(11)

\({\text{PINDEX}} = \mathop \sum \limits_{j} {\text{wtq}}_{i} .{\text{PQ}}_{i}\)

Consumer price index

(12)

\({\text{PINDOM}} = \mathop \sum \limits_{j} {\text{wtd}}_{i} .{\text{PD}}_{i}\)

Domestic price index

Production and trade block equations

(13)

\(X_{i} = {\text{tech}}_{i} .\alpha_{i}^{x} .{\text{EN}}_{i}^{{\alpha_{i}^{x} }} .{\text{KL}}_{i}^{{(1 - \alpha_{i}^{x} )}}\)

Domestic production function

(14)

\({\text{tech}}_{i} .{\text{PEKL}}_{i} .{\text{EN}}_{i} = X_{i} .{\text{PV}}_{i} .\alpha_{i}^{x}\)

Value added function

(15)

\({\text{NEN}}_{i} = {\text{amt}}_{i} .X_{i}\)

Non-energy function

(16)

\({\text{EN}}_{i} = \alpha_{i}^{{{\text{en}}}} .\left[ {\beta_{i}^{{{\text{en}}}} .{\text{FUL}}_{i}^{{{ - \rho_{i}{{\text{en}}}} }} + (1 - \beta_{i}^{{{\text{en}}}} ).{\text{ELEC}}_{i}^{{{ - \rho_{i}{{\text{en}}}} }} } \right]^{{ - \tfrac{1}{{\rho_{i}^{{{\text{en}}}} }}}}\)

CES energy function

(17)

\(\frac{{{\text{FUL}}_{i} }}{{{\text{ELEC}}_{i} }} = \left( {\frac{{{\text{PELEC}}_{i} }}{{{\text{PFUL}}_{i} }}.\frac{{\beta_{i}^{{{\text{en}}}} }}{{(1 - \beta_{i}^{{{\text{en}}}} )_{i} }}} \right)^{{\tfrac{1}{{1 + \beta_{i}^{{{\text{en}}}} }}}}\)

F.O.C. of Energy Function

(18)

\({\text{ELEC}}_{i} = \sum\limits_{{{\text{elp}}}} {{\text{io}}_{{{\text{elp}},i}} } .X_{i}\)

Electricity function

(19)

\({\text{FUL}}_{i} = \alpha_{i}^{{{\text{fl}}}} .\left[ {\beta_{i}^{{{\text{fl}}}} .{\text{PETROL}}_{i}^{{{ - \rho_{i}{{\text{fl}}}} }} + (1 - \beta_{i}^{{{\text{fp}}}} ).{\text{COALNGS}}_{i}^{{{ - \rho_{i}{{\text{fl}}}} }} } \right]^{{ - \tfrac{1}{{\rho_{i}^{{{\text{fl}}}} }}}}\)

CES Fuels function

(20)

\(\frac{{{\text{PETROLD}}_{i} }}{{{\text{COALNGAS}}_{i} }} = \left( {\frac{{{\text{PCOLNGS}}_{i} }}{{{\text{PPETROL}}_{i} }}.\frac{{\beta_{i}^{{{\text{fl}}}} }}{{(1 - \beta_{i}^{{{\text{fl}}}} )_{i} }}} \right)^{{\tfrac{1}{{1 + \beta_{i}^{{{\text{fl}}}} }}}}\)

F.O.C. of Fuels Function

(21)

\({\text{PETROLD}}_{j} = \alpha_{j}^{{{\text{pt}}}} \prod\limits_{pt} {({\text{PETROL}}_{{{\text{pt}},j}} )^{{\beta_{{{\text{pt}},j}} }} }\)

Cobb–Douglas Petroleum products function

(22)

\({\text{PETROL}}_{{{\text{pt}},j}} = \,\,\frac{{\beta_{{{\text{pt}},j}} .{\text{PPETROL}}_{j} .{\text{PETROLD}}_{j} }}{{{\text{PQ}}_{j} }}\)

F.O.C. of Petroleum products function

(23)

\({\text{COALNGS}}_{i} = \alpha_{i}^{{{\text{cong}}}} .\left[ {\beta_{i}^{{{\text{cong}}}} .{\text{COAL}}_{i}^{{{ - \rho_{i}{{\text{cong}}}} }} + (1 - \beta_{i}^{{{\text{cong}}}} ).{\text{NGASD}}_{i}^{{{ - \rho_{i}{{\text{cong}}}} }} } \right]^{{ - \tfrac{1}{{\rho_{i}^{{{\text{cong}}}} }}}}\)

CES Coal and natural gas aggregate function

(24)

\(\frac{{{\text{COAL}}_{i} }}{{{\text{NGASD}}_{i} }} = \left( {\frac{{{\text{PNGAS}}_{i} }}{{{\text{PCOAL}}_{i} }}.\frac{{\beta_{i}^{{{\text{cong}}}} }}{{(1 - \beta_{i}^{{{\text{cong}}}} )_{i} }}} \right)^{{\tfrac{1}{{1 + \beta_{i}^{{{\text{cong}}}} }}}}\)

F.O.C. of Coal and natural gas aggregate function

(25)

NGASDi = iongs,i.Xi

Natural gas function

(26)

COALi = iocol,i.Xi

Coal function

(27)

\({\text{KL}}_{i} = \alpha_{i}^{{{\text{kl}}}} .\left[ {\sum\limits_{{{\text{lc}}}} {\beta_{{i,{\text{lc}}}}^{{{\text{kl}}}} .({\text{LCSC}}_{{i,{\text{lc}}}} )^{{{ - \rho_{i}{{\text{kl}}}} }} } } \right]^{{\tfrac{ - 1}{{\rho_{i}^{{{\text{kl}}}} }}}}\)

labor and capital function

(28)

\(\frac{{{\text{LCSC}}_{{i,{\text{lc}}}} }}{{{\text{KL}}_{i} }} = \left( {\frac{{\beta_{{i,{\text{lc}}}}^{{{\text{kl}}}} .{\text{PV}}_{i} }}{{(\alpha_{i}^{{{\text{kl}}}} )^{{{\rho_{i}{{\text{kl}}}} }} .{\text{PKL}}_{i} .{\text{PKLSEC}}_{{i,{\text{lc}}}} }}} \right)^{{\tfrac{1}{{1 + \rho_{i}^{{{\text{kl}}}} }}}}\)

Labor and capital’ demand function

(29)

\(X_{{{\text{ie}}}} = \propto_{{{\text{ie}}}}^{t} .\left[ {\beta_{{{\text{ie}}}}^{t} .E_{{{\text{ie}}}}^{{\rho_{{{\text{ie}}}}^{t} }} + \left( {1 - \beta_{{{\text{ie}}}}^{t} } \right).D_{{{\text{ie}}}}^{{\rho_{{{\text{ie}}}}^{t} }} } \right]^{{\frac{1}{{\rho_{{{\text{ie}}}}^{t} }}}} , \ldots X_{{{\text{ien}}}} = \, D_{{{\text{ien}}}}\)

Producers’ transformation choice between domestic and export sales

(30)

\(E_{{{\text{ie}}}} = D_{{{\text{ie}}}} .\left[ {\frac{{{\text{PE}}_{{{\text{ie}}}} }}{{{\text{PD}}_{{{\text{ie}}}} }}.\frac{{(1 - \propto_{{{\text{ie}}}}^{t} )}}{{ \propto_{{{\text{ie}}}}^{t} }}} \right]^{{\frac{1}{{( \propto_{{{\text{ie}}}}^{t} - 1)}}}} \quad {\text{or}}\quad E_{{{\text{ied}}}} = \gamma_{{{\text{ied}}}} .\left[ {\frac{{{\text{PWE}}_{{{\text{ied}}}} }}{{{\text{PWSe}}_{{{\text{ied}}}} }}} \right]^{{ - \rho_{{{\text{ied}}}} }}\) or

First-order condition of the CET function = Export demand

(31)

\(Q_{{{\text{im}}}} = \propto_{{{\text{im}}}}^{c} .\left[ {\beta_{{{\text{im}}}}^{c} .M_{{{\text{im}}}}^{{ - \rho_{{{\text{im}}}}^{c} }} + (1 - \beta_{{{\text{im}}}}^{c} ).D_{{{\text{im}}}}^{{\rho_{{{\text{im}}}}^{c} }} } \right]^{{ - \frac{1}{{\rho_{{{\text{im}}}}^{c} }}}}\)

Armington (CES) function

(32)

\(M_{{{\text{im}}}} = D_{{{\text{im}}}} .\left[ {\frac{{{\text{PD}}_{{{\text{im}}}} }}{{{\text{PM}}_{{{\text{im}}}} }}.\frac{{\beta_{{{\text{im}}}}^{c} }}{{(1 - \beta_{{{\text{im}}}}^{c} )}}} \right]^{{\frac{1}{{(1 + \rho_{{{\text{im}}}}^{c} )}}}}\)

First-order condition of the CET function

Income and saving block equations

(33)

\({\text{YF}}_{f} = \mathop \sum \limits_{i} {\text{WF}}_{f} .{\text{FDSC}}_{if} .{\text{wfdist}}_{if}\)

Factors income

(34)

\({\text{YCOMP}} = {\text{YF}}_{{{\text{capi}}}} {-}{\text{EXR.REPAT}} + {\text{INTERS}}_{{{\text{comp}}}}\)

Companies income

(35)

\(\begin{aligned} {\text{YH}} _{h} & = \mathop \sum \limits_{f} {\text{hhdis}}_{hf} .{\text{YF}}_{f} + {\text{ gtrn}}_{h} .{\text{ GOVTRN}} + {\text{ctrn}}_{h} .{\text{ YCOMP}}. \\ & \quad \left( {1 - {\text{ctax}}} \right).\left( {1 - {\text{csav}}} \right) + {\text{sfin}}_{h} .{\text{FACTIN.EXR}} \\ \end{aligned}\)

Households income

(36)

\({\text{TARIFF}} = \mathop \sum \limits_{i} {\text{pwm}}_{i} .{\text{M}}_{i} .{\text{tm}}_{i} .{\text{ EXR}}\)

Tariffs

(37)

\({\text{INTAX}} = \mathop \sum \limits_{i} {\text{PX}}_{i} .{\text{X}}_{i} .{\text{tx}}_{i}\)

Indirect taxes

(38)

\({\text{HHTAX}} = \mathop \sum \limits_{{\text{h}}} {\text{YH}}_{{\text{h}}} .\tau_{{\text{h}}}^{{\text{h}}}\)

Household income taxes

(39)

\({\text{ COMTAX }} = {\text{ctax }}.{\text{YCOMP}}\)

Company taxes

(40)

\({\text{EXPTAX}} = \mathop \sum \limits_{{{\text{ie}}}} {\text{pwe}}_{{{\text{ie}}}} .{\text{E}}_{{{\text{ie}}}} .(1 - te_{{{\text{ie}}}} ).{\text{EXR}}\)

Export taxes

(41)

\({\text{GR}} = {\text{TARIFF}} + {\text{INDTAX}} + {\text{HHTAX}} + {\text{EXPTAX}} + {\text{COMTAX}}\)

Government revenues

(42)

\({\text{HHSAV}} = \mathop \sum \limits_{{\text{h}}} {\text{YH}}_{{\text{h}}} .(1 - {\text{th}}_{{\text{h}}} ).{\text{mps}}_{{\text{h}}}\)

Household savings

(43)

\({\text{COMSAV}} = {\text{YCOMP}}.\left( {1 - {\text{ctax}}} \right).{\text{csav}}\)

Company savings

(44)

\({\text{SAVING}} = {\text{HHSAV}} + {\text{GOVSAV}} + {\text{COMSAV}} - {\text{CURACT}}{\text{. EXR}}\)

Total savings

(45)

\({\text{TSUB}} = \sum\limits_{i} {{\text{SUB}}_{i} }\)

 

Expenditure block equations

(46)

\({\text{ THCON}}_{{\text{h}}} = \mathop \sum \limits_{i} \left[ {{\text{hhclesi}}_{{i,{\text{h}}}} .{\text{YH}}_{{\text{h}}} .\left( {1 - {\text{mps}}_{{\text{h}}} } \right).\left( {1 - \tau_{h} } \right)} \right]\)

Total household consumption

(47)

\({\text{HDM}}_{{{\text{h}},i}} \, = \, \frac{{C\_\min_{{{\text{h}},i}} .{\text{PQ}}_{i} + \, \gamma_{{{\text{h}},i}} .\left[ {{\text{THCON}}_{{\text{h}}} - \sum\limits_{i} {C\_\min_{{{\text{h}},i}} } .{\text{PQ}}_{i} } \right]}}{{{\text{PQ}}_{i} }}\)

Demand for commodities by households

(48)

\({\text{GD}}_{i} = {\text{ggs}}_{i} .{\text{GOVCON}}\)

Government demand

(49)

\({\text{STK}}_{i} = {\text{inv}}_{i} . \, X_{i}\)

Demand for new inventories

(50)

\({\text{FXDINV}} = {\text{INVEST}} - \mathop \sum \limits_{i} {\text{PQ}}_{i} .{\text{STK}}_{i}\)

Total nominal fixed investment

(51)

\({\text{DK}}_{i} = \frac{{{\text{zz}}_{i} .{\text{FXDINV}}}}{{\mathop \sum \nolimits_{j} {\text{ccmat}}_{ji} .{\text{PQ}}_{j} }}\)

Investment allocation

(52)

\({\text{ID}}_{i} = \mathop \sum \limits_{j} {\text{ccmat}}_{ij} .{\text{DK}}_{j}\)

Demand for investment goods

(53)

\({\text{GDPVA}} = \mathop \sum \limits_{i} {\text{PV}}_{i} .V_{i} + {\text{INDTAX}} + {\text{TARIFF}} + {\text{EXPTAX - TSUB}}\)

Nominal GDP

(54)

\({\text{REGDP}} = \mathop \sum \limits_{i} \left( {{\text{THCON}}_{i} + {\text{GD}}_{i} + {\text{ID}}_{i} + {\text{STK}}_{i} + \mathop \sum \limits_{{{\text{ie}}}} E_{{{\text{ie}}}} - \mathop \sum \limits_{{{\text{im}}}} (1 - {\text{tmreal}}_{{{\text{im}}}} ).M_{{{\text{im}}}} } \right)\)

Real GDP

(55)

\(Z_{h} = \, \sum\limits_{j} {C\_{\text{MIN}}_{hj} } .{\text{PQ}}_{j}\)

Poverty line

Constraints block equations

(56)

\(Q_{i} = {\text{INTM}}_{i} + {\text{THCON}}_{i} + {\text{GD}}_{i} + {\text{ID}}_{i} + {\text{STK}}_{i }\)

Product market equilibrium

(57)

\(\mathop \sum \limits_{i} {\text{FDSC}}_{if} = {\text{FS}}_{f}\)

Factor market equilibrium

(58)

\({\text{CURACT}} = \mathop \sum \limits_{{{\text{im}}}} {\text{pwm}}_{{{\text{im}}}} .M_{{{\text{im}}}} .{\text{EXR}} + \mathop \sum \limits_{{{\text{ie}}}} {\text{PWE}}_{{{\text{ie}}}} .(1 - {\text{te}}_{{{\text{ie}}}} ).E_{{{\text{ie}}}} .{\text{EXR}}\)

Market-clearing in the foreign exchange market

(59)

\({\text{GOVSAV}} = {\text{GR}} - \mathop \sum \limits_{i} {\text{PQ}}_{i} .{\text{GD}}_{i} - {\text{EXR}}{\text{.INTERS}}_{{{\text{br}}}} - {\text{INTERS}}_{{{\text{comp}}}} - {\text{GOVTRN}} - {\text{TSUB}}\)

Government budget balance

(60)

\({\text{SAVING}} = {\text{INVEST}}\)

Saving and investment balance

Air pollutant function

(61)

CO2fl,p = EMISSIONfl,p.FULfl

Dynamic section of the model

(62)

\({\text{FS}}_{f} = {\text{FS}}_{f} + \sum\limits_{i} {{\text{ID}}_{i} } .{\text{fr}}\_{\text{inv}}\)

Here f = capital

(63)

\({\text{FS}}_{f} = {\text{FS}}_{f} .(1 + G)\)

Here f = labor and G (population growth rate) = 2%

(64)

CURACT = CURACT. (1 + G)

G = 2%

List of variables and their definition

Variables

Definition

Variables

Definition

EXR

Exchange rate

\({\text{PKLSEC}}_{{i,{\text{lc}}}}\)

Factor price sectoral proportionality ratios

PDi

Domestic prices

YFi

Factor income

PEi

Domestic price of exports

THCONi

Final demand for private consumption

PINDEX

Consumption price index

CORSAV

Corporate savings

PINDOM

Domestic price level

CORTAX

Corporate taxes

PKi

Price of composite capital good

GOVSAV

Government savings

PMi

Domestic price of imports

GOVTRN

Government transfers

PQi

Price of composite goods

GR

Government revenue

PVi

Value added price by sector

HHSAV

Total household savings

PWEi

World price of exports

IDi

Final demand for productive investment

PXi

Average output price by sector

INDTAX

Indirect tax revenue

PENi

Energy prices by sector

ioi,j

Intermediates uses coefficients

PNENi

Non-Energy prices by sector

INVEST

Total investment

PEKLi

Energy, capital and labor prices

mpsh

Marginal to save by household type

PELECi

Electricity prices

RGDP

Real GDP

PFULi

Fuels prices

SAVING

Total savings

PPETROLi

Petroleum products price

STKi

Inventory investment by sector

Di

Domestic sales of domestic output

TARIFF

Tariff revenue

Ei

Exports by sector

HHTAX

Household tax revenue

Mi

Imports by sector

REMIT

Remittance from abroad

Qi

Composite goods supply

FACTIN

Interest from abroad

Xi

Domestic output by sector

CURACT

Current account

FSf

Factor supply

BORROWbr

Current borrowing

LCSCi,f

Factor demand by sector

INTERSbr

Interest payments on foreign debt

PKLlc

Average capital and labor price

Tech

Efficiency parameter

C_mini,h

Minimum consumption

EN

Energy demand

THCONh

Total household consumption

NEN

Non-Energy demand

Z h

Poverty line in household h

ELEC

Electricity demand

HDMh,c

Demand for commodities

FUL

Fuels demand

SUB

Government subsidy to Enterprises

COALNGS

Coal and natural gas demand

TSUB

Total subsidies

PETROLD

Petroleum products demand

DKi

Vol. of investment by destination

PETROLpt,j

Sectoral petroleum demand by sector

EXPTAX

Export tax revenue

COALNGS

Aggregate coal and natural gas demand

FXDINV

Fixed capital investment

COAL

Coal demand

GDi

Final demand for govt. consumption

NGASD

Natural gas demand

GDPVA

Value added in market prices: GDP

COALNGS

Coal and natural gas demand

GOVCON

Total volume of govt. consumption

PCOAL

Coal price

List of parameters and their definition

Parameters and scalars

Definition

Parameters and scalars

Definition

CSAV

Saving rate for corporations

\(\beta_{i}^{c}\)

Armington function share parameter

CTAX

Tax rate for corporate income

SUMSH

Sum of share correction parameter

CTRNh

Share of distributed corporate income

SUMHSHh

Sum of share for h consumption shares

DEVBUD

Development budget as reported by government

SUMCCSHi

Sum of share for ccmat and 10 tables

GGi

Government consumption shares

tmreali

Real tariff rate

GTRNh

Share of government subsidies

WTDi

Domestic price index weights

INVi

Ratio of inventory investment to gross output

WTQi

Composite price index weights

\(\rho_{i}^{c}\)

Armington function exponent

\({\text{io}}_{i,j}\)

Input–output coefficients

\(\rho_{i}^{e}\)

Export demand price elasticity

ROUTIN

Government routine expenditures

\(\rho_{i}^{t}\)

CET function exponent

TXi

Indirect tax rates

\(\rho_{i}^{v}\)

Value added function exponent

TVAi

Value added tax rates (indirect plus export)

\(\propto_{i}^{c}\)

Armington function shift parameter

TMi

Tariff rates on imports

\(\propto_{i}^{t}\)

CET function shift parameter

THh

Income tax rate by household type

\(\propto_{i}^{\nu }\)

Value added function shift parameter

SFINh

Share of foreign income for each household

\(\propto_{i}^{x}\)

Production function shift parameter

ZZi

Shares of investment by sector of destination

\(\beta_{i}^{t}\)

CET function share parameter

TEi

Export duty rates

\(\beta_{i,f}^{x}\)

Production function share parameter

\(\alpha_{i}\)

Utility function exponent

\(\alpha_{i}^{{{\text{en}}}}\)

Shift parameter of energy function

\(\alpha_{i}^{{{\text{kl}}}}\)

Shift parameter of KL function

\(\beta_{i}^{{{\text{en}}}}\)

Share parameter of energy function

\(\beta_{i}^{{{\text{kl}}}}\)

Share parameter of KL function

\(\rho_{i}^{{{\text{en}}}}\)

Substitution elasticity of energy function

\(\rho_{i}^{{{\text{kl}}}}\)

Substitution elasticity of KL function

\(\alpha_{i}^{{{\text{fl}}}}\)

Shift parameter of fuel function

  

\(\beta_{i}^{{{\text{fl}}}}\)

Share parameter of fuel function

  

\(\rho_{i}^{{{\text{fl}}}}\)

Substitution elasticity of fuel function

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Solaymani, S. Effectiveness of energy efficiency improvements in the context of energy subsidy policies. Clean Techn Environ Policy 23, 937–963 (2021). https://doi.org/10.1007/s10098-020-02005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-020-02005-8

Keywords

Navigation