Skip to main content

Advertisement

Log in

Bury, burn, or gasify: assessing municipal solid waste management options in Indian megacities by exergy analysis

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

With increasing consumption propelled by economic prosperity, waste generation per capita in developing countries is growing quickly. Traditional approaches of open dumping and landfilling are encountering physical constraints, particularly in megacities, and the need for alternate municipal solid waste (MSW) management strategies is urgent. Among alternatives that are commonly considered are waste-to-energy technologies including incineration and plasma gasification. Previous studies convey the benefits of such technologies, but most do not consider the waste and environmental conditions in tropical megacities such as Mumbai, India, making these studies of limited use to developing countries. This article evaluates the exergetic potential of converting MSW to useful work by thermal and biochemical conversion technologies in the Indian context, considering the facts that the scale of production, composition, climate, segregation practices, moisture content of MSW, etc. in a developing tropical country like India differ significantly from those in developed societies in temperate climate locations. Both, exergy and economic analysis find gasification to be attractive in terms of its monetary return and thermodynamic efficiency. However, this analysis also identifies major hurdles in adopting advanced waste-to-energy technologies including lack of waste segregation, high moisture content, and high capital cost of the most thermodynamically efficient technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ameri M, Ahmadi P, Khanmohammadi S (2008) Exergy analysis of a 420 MW combined cycle power plant. Int J Energy Res 32:175–183. doi:10.1002/er.1351

    Article  CAS  Google Scholar 

  • Annepu RK (2012) Sustainable solid waste management in India. Thesis Earth Engineering Center, Columbia University, New York

  • Ayres R (2003) Exergy, power and work in the US economy, 1900–1998. Energy 28:219–273. doi:10.1016/S0360-5442(02)00089-0

    Article  Google Scholar 

  • Ayres RU, Talens Peiró L, Villalba Méndez G (2011) Exergy efficiency in industry: Where do we stand? Environ Sci Technol 45:10634–10641. doi:10.1021/es202193u

    Article  CAS  Google Scholar 

  • Byun Y, Namkung W, Cho M et al (2010) Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment. Environ Sci Technol 44:6680–6684. doi:10.1021/es101244u

    Article  CAS  Google Scholar 

  • Byun Y, Cho M, Chung JW et al (2011) Hydrogen recovery from the thermal plasma gasification of solid waste. J Hazard Mater 190:317–323. doi:10.1016/j.jhazmat.2011.03.052

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Dutta A, Ray S (2009) Municipal solid waste management in Kolkata, India—a review. Waste Manag 29:1449–1458. doi:10.1016/j.wasman.2008.08.030

    Article  CAS  Google Scholar 

  • Dai J, Chen B, Sciubba E (2014) Ecological accounting based on extended exergy: a sustainability perspective. Environ Sci Technol 48:9826–9833. doi:10.1021/es404191v

    Article  CAS  Google Scholar 

  • Dorn T, Flamme S, Nelles M (2012) A review of energy recovery from waste in China. Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA 30:432–441. doi:10.1177/0734242X11433530

    Article  CAS  Google Scholar 

  • Ducharme C (2010) Technical and economic analysis of Plasma-assisted Waste-to-Energy processes. Research Paper I. School of Engineering and Applied Science, Columbia University

  • Eriksson O, Reich MC, Frostell B, Bjo A (2005) Municipal solid waste management from a systems perspective. J Clean Prod 13:241–252. doi:10.1016/j.jclepro.2004.02.018

    Article  Google Scholar 

  • Galeno G, Minutillo M, Perna A (2011) From waste to electricity through integrated plasma gasification/fuel cell (IPGFC) system. Int J Hydrog Energy 36:1692–1701. doi:10.1016/j.ijhydene.2010.11.008

    Article  CAS  Google Scholar 

  • Gohlke O (2009) Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance. Waste Manag Res 27:894–906. doi:10.1177/0734242X09349857

    Article  CAS  Google Scholar 

  • Hlina M, Hrabovsky M, Kavka T, Konrad M (2014) Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Manag 34:63–66. doi:10.1016/j.wasman.2013.09.018

    Article  CAS  Google Scholar 

  • Hu Y (2010) China needs to control mercury emissions from municipal solid waste (MSW) incineration. Environ Sci Technol 44:7994–7995

  • Janajreh I, Raza SS, Valmundsson AS (2013) Plasma gasification process: modeling, simulation and comparison with conventional air gasification. Energy Convers Manag 65:801–809. doi:10.1016/j.enconman.2012.03.010

    Article  CAS  Google Scholar 

  • Joshi AS, Dincer I, Reddy BV (2009) Thermodynamic assessment of photovoltaic systems. Sol Energy 83:1139–1149. doi:10.1016/j.solener.2009.01.011

    Article  Google Scholar 

  • Kalinci Y, Hepbasli A, Dincer I (2011) Exergoeconomic analysis of hydrogen production from plasma gasification of sewage sludge using specific exergy cost method. Int J Hydrog Energy 36:11408–11417. doi:10.1016/j.ijhydene.2010.11.124

    Article  CAS  Google Scholar 

  • Langenhove HRVAN (2002) Quantitative assessment of solid waste treatment systems in the industrial ecology perspective by exergy analysis. Environ Sci Technol 36:1130–1135

    Article  Google Scholar 

  • Morrin S, Lettieri P, Chapman C, Mazzei L (2012) Two stage fluid bed-plasma gasification process for solid waste valorisation: technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Manag 32:676–684. doi:10.1016/j.wasman.2011.08.020

    Article  CAS  Google Scholar 

  • Morris DR, Szargut J (1986) Standard chemical exergy of some elements and compounds on the planet earth. Energy 11:733–755. doi:10.1016/0360-5442(86)90013-7

    Article  CAS  Google Scholar 

  • Mountouris A, Voutsas E, Tassios D (2006) Solid waste plasma gasification: equilibrium model development and exergy analysis. Energy Convers Manag 47:1723–1737. doi:10.1016/j.enconman.2005.10.015

    Article  CAS  Google Scholar 

  • Mountouris A, Voutsas E, Tassios D (2008) Plasma gasification of sewage sludge: process development and energy optimization. Energy Convers Manag 49:2264–2271. doi:10.1016/j.enconman.2008.01.025

    Article  CAS  Google Scholar 

  • Moustakas K, Fatta D, Malamis S et al (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 123:120–126. doi:10.1016/j.jhazmat.2005.03.038

    Article  CAS  Google Scholar 

  • Murphy JD, Mckeogh E (2004) Technical, economic and environmental analysis of energy production from municipal solid waste. Renew Energy 29:1043–1057. doi:10.1016/j.renene.2003.12.002

    Article  CAS  Google Scholar 

  • Rathi S (2007) Optimization model for integrated municipal solid waste management in Mumbai, India. Environ Dev Econ 12:105–121

    Article  Google Scholar 

  • Ricaud A (2011) Practical and economic viability of small scale Energy-from-Waste. Thesis Imperial College London

  • Rivero RÃ, Garfias M (2006) Standard chemical exergy of elements updated. Energy 31:3310–3326. doi:10.1016/j.energy.2006.03.020

    Article  CAS  Google Scholar 

  • Sciubba E (2008) Critical review exergy: its potential and limitations in environmental science and technology. Environ Sci Technol 42:2221–2232

    Article  Google Scholar 

  • Sharholy M, Ahmad K (2008) Municipal solid waste management in Indian cities—a review. Waste Manag 28:459–467. doi:10.1016/j.wasman.2007.02.008

    Article  Google Scholar 

  • Sikka P (2000) Energy from MSW refused derived fuel (RDF) pelletization-a pilot Indian plant. Department of Science & Technology, Government of India

  • Singh K, Kelly SO, Sastry MKS (2009) Municipal solid waste to energy: an economic and environmental assessment for application in Trinidad and Tobago. J Assoc Prof Eng Trinidad Tobago 38:42–49

    Google Scholar 

  • Singh RP, Tyagi VV, Allen T et al (2011) An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew Sustain Energy Rev 15:4797–4808. doi:10.1016/j.rser.2011.07.071

    Article  Google Scholar 

  • SWM Cell (2003) Status report on municipal solid waste management. Konkan Division, All India Institute of Local Self Government, Mumbai

  • The International Energy Agency (IEA) (2008) Turning a liability into an asset: landfill methane utilisation potential

  • The World Bank (1999) Decision makers’ guide to municipal solid waste incineration. The World Bank Washington, Washington

    Google Scholar 

  • Tsai W, Kuo K (2010) An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy 35:4824–4830. doi:10.1016/j.energy.2010.09.005

    Article  CAS  Google Scholar 

  • Ukidwe, Nandan (2005) Thermodynamic Input-output LCA of the 1997 U.S. Economy with application to electricity generation. In: AiChE Annual Meeting. pp 13233–13562

  • US EPA UE (1985) Chapter 2: solid waste disposal, AP 42, Fifth Edition, Volume I. http://www.epa.gov/ttnchie1/ap42/ch02/. Accessed 20 Sept 2014

  • Vorst GVD, Dewulf J, Aelterman W, Witte BD, Langenhove HV (2011) A systematic evaluation of the resource consumption of active pharmaceutical ingredient production at three different levels. Environ Sci Technol 45:3040–3046

  • Wang X, Nagpure AS, Decarolis JF, Barlaz MA (2013) Using observed data to improve estimated methane collection from select U.S. Landfills. Environ Sci Technol 47:3251–3257

    CAS  Google Scholar 

  • Yaws C (1999) Chemical properties handbook. McGraw-Hill, New York

    Google Scholar 

  • Yedla S, Kansal S (2003) Economic insight into municipal solid waste management in Mumbai: a critical analysis. Int J Environ Pollut 19:516–527

    Article  CAS  Google Scholar 

  • Zhou C, Hu D, Wang R, Liu J (2011) Exergetic assessment of municipal solid waste management system in south Beijing. Exol Complex 8:171–176. doi:10.1016/j.ecocom.2011.01.006

    Article  Google Scholar 

  • Zhu D, Ansani P, Anapolsky S, Mani S (2008) Improving municipal solid waste management in India. The World Bank Washington, Washington

    Google Scholar 

  • Zvolinschi A, Kjelstrup S, Bolland O, van der Kooi HJ (2007) Exergy sustainability indicators as a tool in industrial ecology. J Ind Ecol 11:85–98. doi:10.1162/jiec.2007.1142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial financial support was provided by the University Grants Commission, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavik R. Bakshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhao, S.B., Shingade, S.G., Pandit, A.B. et al. Bury, burn, or gasify: assessing municipal solid waste management options in Indian megacities by exergy analysis. Clean Techn Environ Policy 19, 1403–1412 (2017). https://doi.org/10.1007/s10098-017-1338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-017-1338-9

Keywords

Navigation