Skip to main content
Log in

Comparison of predicted vehicular pollution concentration with air quality standards for different time periods

  • Research Article
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Air pollution is caused by variety of sources such as industries, vehicles, cremation, bakeries, and open burning. These sources have variation in emission with different time scales. Industry and bakeries have variation in emission with day or week, rest of the sources like vehicles and domestic sector have variation with time in a day. In fact, vehicles have a large variation in emission with time period of the day. The average concentration of 24 h is much less than hourly concentration of peak time when there is heavy vehicular emissions. The hourly concentration of off-peak time or lean time is very low due to low emission for that period. The air quality standards of India are prescribed for 24-h average concentration with which the predicted average concentration from models is compared. However, the peak time concentration may be much higher than the standard. In the peak time, outdoor concentration is more and since a large proportion of the population is out the exposure is also very high and can cause severe health effect. In this paper, vehicular pollution modeling has been carried out using AERMOD with simulated meteorology by Weather Research and Forecasting model. NOx and PM concentrations were 3.6 and 1.45 times higher in peak time than off-peak and evening peak, respectively. Lean time has higher concentration for both NOx and PM than off-peak and evening peak. It shows the misleading concept of comparing average predicted concentration of 24 h with standards for vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amundsen AH, Klæboe R, Fyhri A (2008) Annoyance from vehicular air pollution: exposure-response relationships for Norway. Atmos Environ 42:7679–7688. doi:10.1016/j.atmosenv.2008.05.026

    Article  CAS  Google Scholar 

  • Aquilina N, Micallef A (2004) Evaluation of the Operational Street Pollution Model using data from European cities. Environ Monit Assess 95:75–96

    Article  CAS  Google Scholar 

  • ARAI (2007) Air quality monitoring project-Indian clean air programme (ICAP). Emission Factor development for Indian Vehicle, India

  • Assael MJÃ, Delaki M, Kakosimos KE (2008) Applying the OSPM model to the calculation of PM 10 concentration levels in the historical centre of the city of Thessaloniki. Atmos Environ 42:65–77. doi:10.1016/j.atmosenv.2007.09.029

    Article  CAS  Google Scholar 

  • Barnes MJ, Brade TK, Mackenzie AR, Whyatt JD, Carruthers DJ, Stocker J, Cai X, Hewitt CN (2014) Spatially-varying surface roughness and ground-level air quality in an operational dispersion model. Environ Pollut 185:44–51. doi:10.1016/j.envpol.2013.09.039

    Article  CAS  Google Scholar 

  • Benson PE (1979) CALINE-3, a versatile dispersion model for predicting air pollutant levels near highways and arterial streets. FHWA/CA/TL-79/23, California Department of Transportation, Sacraments

  • Berkowicz R (2000) OSPM—a parameterised street pollution model. Environ Monit Assess 65:323–331

    Article  CAS  Google Scholar 

  • Berkowicz R, Ketzel M, Solvang S, Hvidberg M, Raaschou-nielsen O (2008) Evaluation and application of OSPM for traffic pollution assessment for a large number of street locations. Environ Model Softw 23:296–303. doi:10.1016/j.envsoft.2007.04.007

    Article  Google Scholar 

  • Bertazzon S, Johnson M, Eccles K, Kaplan GG (2015) Accounting for spatial effects in land use regression for urban air pollution modeling. Spat Spatiotemporal Epidemiol 14–15:9–21. doi:10.1016/j.sste.2015.06.002

    Article  Google Scholar 

  • Cheng S, Lang J, Zhou Y, Han L, Wang G, Chen D (2013) A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmos Environ 79:308–316. doi:10.1016/j.atmosenv.2013.06.043

    Article  CAS  Google Scholar 

  • Chock DP (1978) A simple line-source model for dispersion near roadways. Atmos Environ 12:823–829

    Article  CAS  Google Scholar 

  • Choudhary A, Gokhale S (2016) Urban real-world driving traffic emissions during interruption and congestion. Transp Res Part D Transp Environ 43:59–70. doi:10.1016/j.trd.2015.12.006

    Article  Google Scholar 

  • Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine RJ, Wilson RB, Lee RF, Peters WD, Brode RW, Paumier JO (2004) AERMOD: Description of Model Formulation. EPA-454/R-03-004, USEPA, USA

  • Csanady GT (1972) Crosswinds shear effects on atmospheric diffusion. Atmos Environ 6:221–232

    Article  Google Scholar 

  • CTS(2008). Comprehensive Transportation Study for Mumbai Metropolitan Region.World Bank Project

  • Fan X, Lam KC, Yu Q (2012) Differential exposure of the urban population to vehicular air pollution in Hong Kong. Sci Total Environ 426:211–219. doi:10.1016/j.scitotenv.2012.03.057

    Article  CAS  Google Scholar 

  • Fenger J (2009) Air pollution in the last 50 years—From local to global. Atmos Environ 43:13–22. doi:10.1016/j.atmosenv.2008.09.061

    Article  CAS  Google Scholar 

  • Gokhale S (2011) Traffic flow pattern and meteorology at two distinct urban junctions with impacts on air quality. Atmos Environ 45:1830–1840. doi:10.1016/j.atmosenv.2011.01.015

    Article  CAS  Google Scholar 

  • Gokhale S (2012) Impacts of traffic-flows on vehicular-exhaust emissions at traffic junctions. Transp Res Part D Transp Environ 17:21–27. doi:10.1016/j.trd.2011.08.006

    Article  Google Scholar 

  • Henmi T, Flanigan R, Padilla R (2005) Development and application of an evaluation method for the WRF mesoscale model. Army Research Laboratory, ARL-TR-3657

  • Kakosimos KE, Hertel O, Ketzel M, Berkowicz R (2010) Operational Street Pollution Model (OSPM)—a review of performed application and validation studies, and future prospects. Environ Chem 7:485–503

    Article  CAS  Google Scholar 

  • Kesarkar AP, Dalvi M, Kaginalkar A, Ojha A (2007) Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India. Atmos Environ 41:1976–1988

    Article  CAS  Google Scholar 

  • Ketzel M, Ss J, Brandt J, Ellermann T, Hr O, Berkowicz R, Hertel O (2012) Evaluation of the street pollution model OSPM for measurements at 12 streets stations using a newly developed and freely available evaluation tool. Civ Environ Eng S1(004):1–11. doi:10.4172/2165-784X.S1-004

    Google Scholar 

  • Kukkonen J, Valkonen E, Walden J, Koskentalo T, Aarnio K, Karppinen A, Berkowicz R, Kartastenpa R (2001) A measurement campaign in a street canyon in Helsinki and comparison of results with predictions of the OSPM model. Atmos Environ 35:231–243

    Article  CAS  Google Scholar 

  • Kumar A, Dikshit AK, Fatima S, Patil RS (2015) Application of WRF model for vehicular pollution modelling using AERMOD. Atmos Clim Sci 5:57–62

    CAS  Google Scholar 

  • Kumar A, Patil RS, Dikshit AK, Islam S, Kumar R (2016a) Evaluation of control strategies for industrial air pollution sources using American Meteorological Society/Environmental Protection Agency Regulatory Model with simulated meteorology by Weather Research and Forecasting Model. J Clean Prod 116:110–117

    Article  CAS  Google Scholar 

  • Kumar A, Gupta I, Bradt J, Dikshit AK, Kumar R, Patil RS (2016b) Air quality mapping using GIS and economic evaluation of health impact for Mumbai city, India. J Air Waste Manag (in press)

  • Manning AJ, Nicholson KJ, Middleton DR, Rafferty SC (2000) Field Study of Wind And Traffic to Test a Street Canyon model. Environ Monit Assess 60:283–313

    Article  CAS  Google Scholar 

  • Mohan M, Bhari S, Sreenivas A, Marrapu P (2011) Performance Evaluation of AERMOD and ADMS-Urban for Total Suspended Particulate Matter Concentrations in Megacity Delhi. Aerosol Air Qualit Res 11:883–894

    Google Scholar 

  • Mokhtar MM, Hassim MH, Taib RM (2014) Health risk assessment of emissions from a coal-fired power plant using AERMOD modelling. Process Saf Environ Prot 92:476–485. doi:10.1016/j.psep.2014.05.008

    Article  CAS  Google Scholar 

  • Nagendra SMS, Khare M (2002) Line source emission modelling. Atmos Environ 36:2083–2098. doi:10.1016/S1352-2310(02)00177-2

    Article  CAS  Google Scholar 

  • Namdeo A, Stringer C (2008) Investigating the relationship between air pollution, health and social deprivation in Leeds, UK. Environ Int 34:585–591. doi:10.1016/j.envint.2007.12.015

    Article  CAS  Google Scholar 

  • NCAR (2012). Advanced Research WRF User’s guide, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA

  • Neema MN, Jahan J (2014) An innovative approach to mitigate vehicular emission through roadside Greeneries : a Case Study on Arterial Roads of Dhaka City. J Data Anal Inf Process 2:32–39

    Google Scholar 

  • Pawar DS, Patil GR (2015) Pedestrian temporal and spatial gap acceptance at mid-block street crossing in developing world. J Saf Res. 52:39–46. doi:10.1016/j.jsr.2014.12.006

    Article  Google Scholar 

  • Petersen WB (1980). Users Guide for HIWAY-2, Highway Air Pollution Model. EPA-600/8-80-018

  • Province H, Wang L, Yang J, Zhang P, Zhao X, Wei Z, Zhang F, Su J, Meng C (2013) A Review of air pollution and control in Hebei Province. J Data Anal Inf Process 2:47–55

    Google Scholar 

  • Rood AS (2014) Performance Evaluation of AERMOD, CALPUFF, and Legacy Air Dispersion Models Using the Winter Validation Tracer Study Dataset. Atmos Environ 89:707–720

    Article  CAS  Google Scholar 

  • Sharma N, Chaudhry KK, Rao CVC (2004) Vehicular pollution prediction modelling: a review of highway dispersion models. Trans Rev 24:409–435

    Article  Google Scholar 

  • Shukla A, Alam M (2010) Assessment of real world on-road vehicle emissions under dynamic urban traffic conditions in Delhi. Int J Urban Sci 14:207–220. doi:10.1080/12265934.2010.9693677

    Article  Google Scholar 

  • Sivacoumar R, Thanasekaran K (1999) Line source model for vehicular pollution prediction near roadways and model evaluation through statistical analysis. Environ Pollut 104:389–395. doi:10.1016/S0269-7491(98)00190-0

    Article  CAS  Google Scholar 

  • Sivacoumar R, Bhanarkar AD, Goyal SK, Gadkari SK, Aggarwal AL (2001a) Air pollution modeling for an industrial complex and model performance evaluation. Environ Pollut 111:471–477. doi:10.1016/S0269-7491(00)00083-X

    Article  CAS  Google Scholar 

  • Sivacoumar R, Bhanarkar AD, Goyal SK, Gadkari SK, Aggarwal AL (2001b) Air pollution modeling for an industrial complex and model performance evaluation. Environ Pollut 111:471–477

    Article  CAS  Google Scholar 

  • Sonawane NV, Patil RS, Sethi V (2012) Health benefit modelling and optimization of vehicular pollution control strategies. Atmos Environ 60:193–201. doi:10.1016/j.atmosenv.2012.06.060

    Article  CAS  Google Scholar 

  • Thaker P, Gokhale S (2015) The impact of traffic-flow patterns on air quality in urban street canyons. Environ Pollut. doi:10.1016/j.envpol.2015.09.004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awkash Kumar.

Appendix

Appendix

See Table A1 and Fig. A1.

Table A1 Comparison of simulated concentration with ambient observed concentration
Fig. A1
figure 8

Wind roses for morning and evening peak, off-peak, and lean time of the day

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Patil, R.S., Dikshit, A.K. et al. Comparison of predicted vehicular pollution concentration with air quality standards for different time periods. Clean Techn Environ Policy 18, 2293–2303 (2016). https://doi.org/10.1007/s10098-016-1147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1147-6

Keywords

Navigation