Skip to main content

Advertisement

Log in

A comparative thermodynamic analysis and experimental studies on hydrogen synthesis by supercritical water gasification of glucose

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A thermodynamic equilibrium analysis of hydrogen (H2) production from supercritical water gasification (SCWG) of glucose was explored based on Gibbs free energy minimization using Soave–Redlich–Kwong equation of state with Boston Mathias alpha function (SRK-BM) property method. The effects of experimental conditions [i.e., glucose concentration (0.1–1.2 M), temperature (773–1073 K), and pressure (22–35 MPa)] on the equilibrium gas product yields and gasification performance were investigated. The temperature of about 923 K, pressure of 23–28 MPa, and glucose concentration being 0.1–0.2 M are justified to provide H2 yield in the order of its stoichiometric value (12 mol) with negligible amounts of CO and CH4. The simulated product yields, gasification efficiency (GE), cold gas efficiency (CGEP), cold gas efficiency of H2 (CGEH2), and calculated heat duty in this study were compared with their respective experimental data taken from the literature. The aforementioned operating conditions correspond to minimum heat duty of 60–107 MW and significant values of CGEP, CGEH2, and GE of 121.1–118.4, 118.4–105.4, and 158.3–151.6 %, respectively. The dissimilarity between the experimental product distributions reported in the literature is related to the reactor material and residence time as well as catalyst type. The current study provided thermodynamic parameters for optimizing the operational condition of glucose SCWG, which may be extended to other biomass supercritical water gasification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a ik :

Number of atoms of the kth element present in each molecule of species i

a i :

Attractive parameter of SRK equation

a 1 :

Asymmetric (polar) term in alpha function

A k :

Total moles of kth element in the feed (mol/min)

b i :

Covolume parameter

C i (and d i ):

Constants for Boston–Mathias

F :

Steam flow rate (mol/min)

\(\hat{f}_{i}^{\text{g}}\) :

Fugacity of species i in gas system

\(\hat{f}_{i}^{\text{l}}\) :

Fugacity of species i in the liquid phase

\(\hat{f}_{i}^{\text{s}}\) :

Fugacity of species i in the solid phase

\(\hat{f}_{\text{C}}^{\text{s}}\) :

Fugacity of solid carbon at the operational pressure

\(\hat{f}_{\text{C}}^{\text{v}}\) :

Fugacity of solid carbon at its vapor pressure

\(f_{i}^{{ \circ {\text{g}}}}\) :

Standard state of fugacity of pure component i in the gas phase

\(f_{i}^{{ \circ {\text{l}}}}\) :

Standard state of fugacity of pure component i in the liquid phase

\(f_{i}^{{ \circ {\text{s}}}}\) :

Standard state of fugacity of pure component i in the solid phase

\(f_{i}^{{ * , {\text{l }}}}\) :

Liquid fugacity of pure species i at mixture temperature

\(\overline{G}_{i}\) :

Partial molar Gibbs free energy of each component i in each phase (kJ/mol)

\(G_{i,e}^{ \circ }\) :

Standard Gibbs free energy of element i (kJ/mol)

\(G_{i}^{{ \circ {\text{g}}}}\) :

Standard Gibbs free energy of species i in the gas phase (kJ/mol)

\(G_{i}^{{ \circ {\text{l}}}}\) :

Standard Gibbs free energy of species i in the liquid phase (kJ/mol)

\(G_{i}^{{ \circ {\text{s}}}}\) :

Standard Gibbs free energy of species i in the solid phase (kJ/mol)

\(G_{\text{C}}^{{ \circ {\text{s}}}}\) :

Standard Gibbs free energy of pure solid carbon (kJ/mol)

\(G_{{ ( {\text{T,P)}}}}^{\text{t}}\) :

Total Gibbs free energy of three phases (kJ)

\(\Delta G_{\text{fi }}^{ \circ }\) :

Standard Gibbs free energy of formation for species i (kJ/mol)

\(\Delta G_{\text{fi}}^{{ \circ {\text{g}}}}\) :

Standard Gibbs free energy of formation for species i in the gas phase (kJ/mol)

\(\Delta G_{\text{r}}^{ \circ }\) :

Gibbs free energy change of reaction (kJ/mol)

H i :

Henry’s constant

\(l_{ij} \; ( {\text{and}}\;k_{ij} )\) :

Interaction parameters

m i :

Acentric function

\(n_{i }\) :

Molar flow rate of species i (mol/min)

N :

Number of species in a reaction system

N P :

Number of phases

P :

Pressure of the reaction system (atm)

p :

Polar parameter in Boston–Mathis alpha function

\(P^{ \circ }\) :

Standard-state pressure (1 atm)

\(P_{\text{ci}}\) :

Critical pressure of species i (atm)

\(P_{\text{C}}^{\text{sat}}\) :

Vapor pressure of pure solid carbon at the operational temperature

R :

Molar gas constant (kJ/mol. K)

T :

Temperature of the reaction system (K)

Tci :

Critical temperature of species i (K)

T ri :

Reduced temperature of species i (K)

V m :

Molar volume (m3/mol)

x i (and x j ):

Mole fraction of species i (or j)

y i :

Mole fraction of species i in gas phase

α i :

Alpha function of species i

\(v_{i}\) :

Stoichiometric coefficient of species i

\(\hat{\phi }_{i}^{\text{g}}\) :

Fugacity coefficient of species i in the gas phase

\(\hat{\phi }_{i}^{\text{l}}\) :

Fugacity coefficient of species i in the liquid phase

γ i :

Activity coefficient of the supercritical species

γ *i :

Normalized activity coefficient for the dissolved gases in the liquid phase

γ i :

Infinite dilution activity coefficient of species i in the mixture

γ l i :

Liquid activity coefficient of species i

ω i :

Acentric factor

g:

Gas phase

l:

Liquid phase

s:

Solid phase

t:

Total

i (and j):

Component in the mixture

k :

Element in each molecule

SCWG:

Supercritical water gasification

SCW:

Supercritical water

WGS:

Water gas shift

AC:

Activated carbon

MDR:

CH4 dry reforming

References

  • Ahmed S, Aitani A, Rahman F, Al-Dawood A, Al-Muhaish F (2009) Decomposition of hydrocarbons to hydrogen and carbon. Appl Catal A 359:1–24

    Article  CAS  Google Scholar 

  • Ahmed T, Ahmad M, Lam H, Yusup S (2013) Hydrogen from renewable palm kernel shell via enhanced gasification with low carbon dioxide emission. Clean Technol Environ Policy 15:513–523

    Article  CAS  Google Scholar 

  • Antal MJ Jr, Allen SG, Schulman D, Xu X, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39:4040–4053

    Article  CAS  Google Scholar 

  • Antal MJ Jr. (1978) Synthesis gas production from organic wastes by pyrolysis/steam reforming. In: Energy from biomass and wastes. IGT, Chicago, pp 495–524

  • Aspen Technology Inc (2012) Aspen Plus User Guide Release 12.1. Aspen Tech, Cambridge

    Google Scholar 

  • Azadi P, Farnood R (2011) Review of heterogeneous catalysts for sub-and supercritical water gasification of biomass and wastes. Int J Hydrogen Energy 36:9529–9541

    Article  CAS  Google Scholar 

  • Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A (2010) Fermentative hydrogen production by diverse microflora. Int J Hydrogen Energy 35:5021–5027

    Article  CAS  Google Scholar 

  • Bleeker M, Gorter S, Kersten S, van der Ham L, van den Berg H, Veringa H (2010) Hydrogen production from pyrolysis oil using the steam-iron process: a process design study. Clean Technol Environ Policy 12:125–135

    Article  CAS  Google Scholar 

  • Bozorgmehr MR, Housaindokht MR (2006) Prediction of the solubility of cholesterol and its esters in supercritical carbon dioxide. Chem Eng Technol 29:1481–1486

    Article  CAS  Google Scholar 

  • Brau JF, Morandin M, Berntsson T (2013) Hydrogen for oil refining via biomass indirect steam gasification: energy and environmental targets. Clean Technol Environ Policy 15:501–512

    Article  CAS  Google Scholar 

  • Bulatov I, Klemeš J (2011) Clean fuel technologies and clean and reliable energy: a summary. Clean Technol Environ Policy 13:543–546

    Article  Google Scholar 

  • Byrd AJ, Pant K, Gupta RB (2007) Hydrogen production from glucose using Ru/Al2O3 catalyst in supercritical water. Ind Eng Chem Res 46:3574–3579

    Article  CAS  Google Scholar 

  • Castello D, Fiori L (2011) Supercritical water gasification of biomass: thermodynamic constraints. Bioresour Technol 102:7574–7582

    Article  CAS  Google Scholar 

  • Castello D, Kruse A, Fiori L (2015) Low temperature supercritical water gasification of biomass constituents: glucose/phenol mixtures. Biomass Bioenergy 73:84–94

    Article  CAS  Google Scholar 

  • Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects. Appl Catal B 85:1–9

    Article  CAS  Google Scholar 

  • Chen Y, Guo L, Cao W, Jin H, Guo S, Zhang X (2013) Hydrogen production by sewage sludge gasification in supercritical water with a fluidized bed reactor. Int J Hydrogen Energy 38:12991–12999

    Article  CAS  Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  • de Resende FLP (2009) Supercritical water gasification of biomass. ProQuest, Ann Arbor

    Google Scholar 

  • Foglia D, Wukovits W, Friedl A, Ljunggren M, Zacchi G, Urbaniec K, Markowski M (2011) Effects of feedstocks on the process integration of biohydrogen production. Clean Technol Environ Policy 13:547–558

    Article  CAS  Google Scholar 

  • Goodwin AK, Rorrer GL (2008) Conversion of glucose to hydrogen-rich gas by supercritical water in a microchannel reactor. Ind Eng Chem Res 47:4106–4114

    Article  CAS  Google Scholar 

  • Graboski MS, Daubert TE (1978) A modified Soave equation of state for phase equilibrium calculations. 1. Hydrocarbon systems. Ind Eng Chem Process Des Dev 17:443–448

    Article  CAS  Google Scholar 

  • Hao X, Guo L, Mao X, Zhang X, Chen X (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrogen Energy 28:55–64

    Article  CAS  Google Scholar 

  • Hendry D, Venkitasamy C, Wilkinson N, Jacoby W (2011) Exploration of the effect of process variables on the production of high-value fuel gas from glucose via supercritical water gasification. Bioresour Technol 102:3480–3487

    Article  CAS  Google Scholar 

  • Higman C, Van der Burgt M (2003) Gasification. Gulf Professional Publishing, Burlington. ISBN 0-7506-7707-4

    Google Scholar 

  • Hirth T, Franck E (1993) Oxidation and hydrothermolysis of hydrocarbons in supercritical water at high pressures. Ber Bunsen Phys Chem 97:1091–1097

    Article  CAS  Google Scholar 

  • Huff JA, Reed TM III (1963) Second virial coefficients of mixtures of nonpolar molecules from correlations on pure components. J Chem Eng Data 8:306–311

    Article  CAS  Google Scholar 

  • Igliński B, Piechota G, Buczkowski R (2014) Development of biomass in polish energy sector: an overview. Clean Technol Environ Policy 17:317–329

  • Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1997) Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind Eng Chem Res 36:1552–1558

    Article  CAS  Google Scholar 

  • Kabyemela B, Takigawa M, Adschiri T, Malaluan R, Arai K (1998) Mechanism and kinetics of cellobiose decomposition in sub-and supercritical water. Ind Eng Chem Res 37:357–361

    Article  CAS  Google Scholar 

  • Keche A, Gaddale A, Tated R (2014) Simulation of biomass gasification in downdraft gasifier for different biomass fuels using Aspen Plus. Clean Technol Environ Policy 17:465–473

  • Kırtay E (2011) Recent advances in production of hydrogen from biomass. Energy Convers Manag 52:1778–1789

    Article  Google Scholar 

  • Kruse A (2008) Supercritical water gasification. Biofuels Bioprod Biorefin 2:415–437

    Article  CAS  Google Scholar 

  • Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant: properties and synthesis reactions. J Supercrit Fluid 41:361–379

    Article  CAS  Google Scholar 

  • Kruse A, Gawlik A (2003) Biomass conversion in water at 330–410 & #xB0;C and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42:267–279

    Article  CAS  Google Scholar 

  • Kruse A, Henningsen T, Sınaǧ A, Pfeiffer J (2003) Biomass gasification in supercritical water: influence of the dry matter content and the formation of phenols. Ind Eng Chem Res 42:3711–3717

    Article  CAS  Google Scholar 

  • Lee IG (2011) Effect of metal addition to Ni/activated charcoal catalyst on gasification of glucose in supercritical water. Int J Hydrogen Energy 36:8869–8877

    Article  CAS  Google Scholar 

  • Lee IG, Ihm SK (2008) Catalytic gasification of glucose over Ni/activated charcoal in supercritical water. Ind Eng Chem Res 48:1435–1442

    Article  Google Scholar 

  • Lee IG, Kim MS, Ihm SK (2002) Gasification of glucose in supercritical water. Ind Eng Chem Res 41:1182–1188

    Article  CAS  Google Scholar 

  • Lems S, van der Kooi HJ, de Swaan Arons J (2003) Quantifying technological aspects of process sustainability: a thermodynamic approach. Clean Technol Environ Policy 5:248–253

    Article  CAS  Google Scholar 

  • Lu Y, Guo L, Ji C, Zhang X, Hao X, Yan Q (2006) Hydrogen production by biomass gasification in supercritical water: a parametric study. Int J Hydrogen Energy 31:822–831

    Article  CAS  Google Scholar 

  • Lu Y, Guo L, Zhang X, Yan Q (2007) Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chem Eng J 131:233–244

    Article  CAS  Google Scholar 

  • Lu Y, Guo L, Zhang X, Ji C (2012) Hydrogen production by supercritical water gasification of biomass: explore the way to maximum hydrogen yield and high carbon gasification efficiency. Int J Hydrogen Energy 37:3177–3185

    Article  Google Scholar 

  • Madenoğlu TG, Boukis N, Sağlam M, Yüksel M (2011) Supercritical water gasification of real biomass feedstocks in continuous flow system. Int J Hydrogen Energy 36:14408–14415

    Article  Google Scholar 

  • Marrone PA, Hong GT (2009) Corrosion control methods in supercritical water oxidation and gasification processes. J Supercrit Fluids 51:83–103

    Article  CAS  Google Scholar 

  • Mathias PM (1983) A versatile phase equilibrium equation of state. Ind Eng Chem Process Des Dev 22:385–391

    Article  CAS  Google Scholar 

  • Matsumura Y, Minowa T, Potic B, Kersten SR, Prins W, van Swaaij WP, Kruse A (2005) Biomass gasification in near-and super-critical water: status and prospects. Biomass Bioenergy 29:269–292

    Article  CAS  Google Scholar 

  • Matsumura Y, Harada M, Nagata K, Kikuchi Y (2006) Effect of heating rate of biomass feedstock on carbon gasification efficiency in supercritical water gasification. Chem Eng Commun 193:649–659

    Article  CAS  Google Scholar 

  • Meier K (2014) Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials. Int J Energy Environ Eng 5:1–12

    Article  CAS  Google Scholar 

  • Nikoo MK, Amin NAS (2011) Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol 92:678–691

    Article  CAS  Google Scholar 

  • Noureldin MB, Bao B, Elbashir N, El-Halwagi M (2014) Benchmarking, insights, and potential for improvement of Fischer–Tropsch-based biomass-to-liquid technology. Clean Technol Environ Policy 16:37–44

    Article  Google Scholar 

  • Onwudili JA, Williams PT (2009) Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. Int J Hydrogen Energy 34:5645–5656

    Article  CAS  Google Scholar 

  • Ozbay N, Pütün AE, Pütün E (2006) Bio-oil production from rapid pyrolysis of cottonseed cake: product yields and compositions. Int J Energy Res 30:501–510

    Article  CAS  Google Scholar 

  • Palma V, Castaldo F, Ciambelli P, Iaquaniello G (2012) Hydrogen production through catalytic low-temperature bio-ethanol steam reforming. Clean Technol Environ Policy 14:973–987

    Article  CAS  Google Scholar 

  • Pandu K, Joseph S (2012) Comparisons and limitations of biohydrogen production processes: a review. Int J Adv Eng Technol 2:342–356

    Google Scholar 

  • Parthasarathy P, Sheeba K (2015) Combined slow pyrolysis and steam gasification of biomass for hydrogen generation—a review. Int J Energy Res 39:147–164

    Article  Google Scholar 

  • Penninger J, Kersten R, Baur H (1999) Reactions of diphenylether in supercritical water—mechanism and kinetics. J Supercrit Fluid 16:119–132

    Article  CAS  Google Scholar 

  • Preston RA (1981) A computer model of the Rectisol process using the Aspen Simulator. Dissertation, Department of Chemical Engineering, MIT

  • Ramayya S, Brittain A, DeAlmeida C, Mok W, Antal MJ Jr (1987) Acid-catalysed dehydration of alcohols in supercritical water. Fuel 66:1364–1371

    Article  CAS  Google Scholar 

  • Rashidi M, Tavasoli A (2015) Hydrogen rich gas production via supercritical water gasification of sugarcane bagasse using unpromoted and copper promoted Ni/CNT nanocatalysts. J Supercrit Fluids 98:111–118

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Dalai AK, Kozinski JA (2014) Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energy 39:6912–6926

    Article  CAS  Google Scholar 

  • Rivera-Tinoco R, Bouallou C (2010) Using biomass as an energy source with low CO2 emissions. Clean Technol Environ Policy 12:171–175

    Article  CAS  Google Scholar 

  • Rossi C, Cardozo-Filho L, Guirardello R (2009) Gibbs free energy minimization for the calculation of chemical and phase equilibrium using linear programming. Fluid Phase Equilib 278:117–128

    Article  CAS  Google Scholar 

  • Sato T, Kurosawa S, Smith RL (2004) Water gas shift reaction kinetics under noncatalytic conditions in supercritical water. J Supercrit Fluid 29:113–119

    Article  CAS  Google Scholar 

  • Sherif S, Goswami DY, Stefanakos EL, Steinfeld A (2014) Handbook of hydrogen energy. CRC Press, Southampton

    Google Scholar 

  • Shinnar R (2004) The mirage of the H2 economy. Clean Technol Environ Policy 6:223–226

    Article  CAS  Google Scholar 

  • Sinag A, Kruse A, Schwarzkopf V (2003) Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res 42:3516–3521

    Article  CAS  Google Scholar 

  • Singh L, Wahid ZA (2014) Enhancement of hydrogen production from palm oil mill effluent via cell immobilisation technique. Int J Energy Res 2:215–222

    Google Scholar 

  • Susanti RF, Veriansyah B, Kim JD, Kim J, Lee YW (2010) Continuous supercritical water gasification of isooctane: a promising reactor design. Int J Hydrogen Energy 35:1957–1970

    Article  CAS  Google Scholar 

  • Susanti RF, Dianningrum LW, Yum T, Kim Y, Lee BG, Kim J (2012) High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int J Hydrogen Energy 37:11677–11690

    Article  CAS  Google Scholar 

  • Tam MS, Craciun R, Miller DJ, Jackson JE (1998) Reaction and kinetic studies of lactic acid conversion over alkali-metal salts. Ind Eng Chem Res 37:2360–2366

    Article  CAS  Google Scholar 

  • Tang H, Kitagawa K (2005) Supercritical water gasification of biomass: thermodynamic analysis with direct Gibbs free energy minimization. Chem Eng J 106:261–267

    Article  CAS  Google Scholar 

  • Tay D, Ng D, Kheireddine H, El-Halwagi M (2011) Synthesis of an integrated biorefinery via the C-H–O ternary diagram. Clean Technol Environ Policy 13:567–579

    Article  CAS  Google Scholar 

  • Testa E, Giammusso C, Bruno M, Maggiore P (2014) Analysis of environmental benefits resulting from use of hydrogen technology in handling operations at airports. Clean Technol Environ Policy 16:875–890

    Article  CAS  Google Scholar 

  • Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32:379–407

    Article  CAS  Google Scholar 

  • Van Ness HC, Smith J, Abbott M (2004) Introduction to chemical engineering thermodynamics. Mcgraw-Hill Education, New York City

    Google Scholar 

  • Voll F, Rossi C, Silva C, Guirardello R, Souza R, Cabral V, Cardozo-Filho L (2009) Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose. Int J Hydrogen Energy 34:9737–9744

    Article  CAS  Google Scholar 

  • Wang X, Li S, Wang H, Liu B, Ma X (2008) Thermodynamic analysis of glycerin steam reforming. Energy Fuel 22:4285–4291

    Article  CAS  Google Scholar 

  • Withag JAM, Smeets JR, Bramer EA, Brem G (2011) System model for gasification of biomass model compounds in supercritical water-a thermodynamic analysis. J Supercrit Fluid 61:157–166

    Article  Google Scholar 

  • Wooley RJ, Putsche V (1996) Development of an Aspen Plus physical property database for biofuels components. NREL, Golden, Report MP-425-20685

  • Xu X, Matsumura Y, Stenberg J, Antal MJ Jr (1996) Carbon-catalyzed gasification of organic feedstocks in supercritical water. Ind Eng Chem Res 35:2522–2530

    Article  CAS  Google Scholar 

  • Yan Q, Guo L, Lu Y (2006) Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers Manag 47:1515–1528

    Article  CAS  Google Scholar 

  • Yaws CL (2008) Thermophysical properties of chemicals and hydrocarbons. William Andrew Publishing, New York

    Google Scholar 

  • Yu D, Aihara M, Antal MJ Jr (1993) Hydrogen production by steam reforming glucose in supercritical water. Energy Fuel 7:574–577

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our gratitude goes to Prof. Zainuddin Manan (Director of PROSPECT) for providing Aspen Plus software at the Simulation Lab, Department of chemical engineering in University Technology Malaysia, Assoc. Prof. Sharifah Rafidah Wan Alwi, and Dr. Tohid Nejad ghaffar Borhani for their kind advice during the manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Khoshtinat Nikoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoo, M.K., Saeidi, S. & Lohi, A. A comparative thermodynamic analysis and experimental studies on hydrogen synthesis by supercritical water gasification of glucose. Clean Techn Environ Policy 17, 2267–2288 (2015). https://doi.org/10.1007/s10098-015-0965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0965-2

Keywords

Navigation