Skip to main content

Advertisement

Log in

A longitudinal study of Candida bloodstream infections in a Japanese university hospital: species distribution, drug susceptibility, clinical features, and mortality predictors

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We aimed to detect possible changes in Candida species distribution over time and to know the antifungal susceptibility profile of isolates obtained from patients with bloodstream infection (BSI) due to this pathogen. Risk factors associated with 30-day mortality were also assessed. We conducted a retrospective cohort study of patients diagnosed with Candida BSI at a Japanese university hospital from 2013 to 2021. The change in the distribution pattern of the Candida spp. isolated was examined by considering three successive sub-periods of 3 years each. Risk factors for 30-day mortality were determined using Cox regression analysis. In the entire study period, Candida albicans was the most frequent species (46.7%), followed by Candida glabrata (21.5%) and Candida parapsilosis (18.7%). There was no change in Candida species distribution comparing the three sub-periods analyzed. All isolates were susceptible to micafungin, and most were susceptible to fluconazole, except for C. glabrata. No isolates were resistant to amphotericin B or voriconazole. The overall 30-day mortality was 40.2%. Univariate analysis revealed an association between 30-day mortality and central venous catheter (CVC) removal at any time, high Pitt bacteremia score (PBS), and high Charlson comorbidity index (CCI). Multivariate Cox analysis found that high PBS was the only independent predictor of 30-day mortality; subsequent multivariate Cox regression demonstrated that early CVC removal significantly reduced 30-day mortality. Candida species distribution and antifungal susceptibility profile in our hospital remained similar from 2013 to 2021. Early CVC removal may improve candidemia outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Our institution does not mandate archiving datasets generated during retrospective analyses, but they will be available on reasonable request.

References

  1. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317. https://doi.org/10.1086/421946

    Article  PubMed  Google Scholar 

  2. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK (2008) National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities, NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011. https://doi.org/10.1086/591861

    Article  PubMed  Google Scholar 

  3. Puig-Asensio M, Padilla B, Garnacho-Montero J, Zaragoza O, Aguado JM, Zaragoza R, Montejo M, Muñoz P, Ruiz-Camps I, Cuenca-Estrella M, Almirante B (2014) CANDIPOP Project; GEIH-GEMICOMED (SEIMC); REIPI, Epidemiology and predictive factors for early and late mortality in Candida bloodstream infections: a population-based surveillance in Spain. Clin Microbiol Infect 20:O245-254. https://doi.org/10.1111/1469-0691.12380

    Article  CAS  PubMed  Google Scholar 

  4. Nagao M (2013) A multicentre analysis of epidemiology of the nosocomial bloodstream infections in Japanese university hospitals. Clin Microbiol Infect 19:852–858. https://doi.org/10.1111/1469-0691.12083

    Article  CAS  PubMed  Google Scholar 

  5. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK (2014) Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team, Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:1198–1208. https://doi.org/10.1056/NEJMoa1306801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koehler P, Stecher M, Cornely OA, Koehler D, Vehreschild MJGT, Bohlius J, Wisplinghoff H, Vehreschild JJ (2019) Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect 25:1200–1212. https://doi.org/10.1016/j.cmi.2019.04.024

    Article  CAS  PubMed  Google Scholar 

  7. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ (2018) Invasive candidiasis. Nat Rev Dis Primers 4:1–20. https://doi.org/10.1038/nrdp.2018.26

    Article  Google Scholar 

  8. Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I (2021) Candida albicans—the virulence factors and clinical manifestations of infection. J Fungi (Basel) 7:79. https://doi.org/10.3390/jof7020079

    Article  CAS  Google Scholar 

  9. Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373:1445–1456. https://doi.org/10.1056/NEJMra1315399

    Article  CAS  PubMed  Google Scholar 

  10. Son HJ, Kim MJ, Lee S, Choi S, Jung KH, Jung J, Chong YP, Kim SH, Choi SH, Kim YS, Woo JH, Lee JY, Lee SO (2019) Risk factors and outcomes of patients with ocular involvement of candidemia. PLoS ONE 14:e0222356. https://doi.org/10.1371/journal.pone.0222356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfaller MA, Diekema DJ, Turnidge JD, Castanheira M, Jones RN (2019) Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open Forum Infect Dis 15(Suppl 1):S79–S94. https://doi.org/10.1093/ofid/ofy358

    Article  Google Scholar 

  12. Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Bobbio Pallavicini F, Viscoli C (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21. https://doi.org/10.1186/1471-2334-6-21

    Article  PubMed  PubMed Central  Google Scholar 

  13. Richardson MD (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56(Suppl 1):i5–i11. https://doi.org/10.1093/jac/dki218

    Article  CAS  PubMed  Google Scholar 

  14. Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20(Suppl 6):5–10. https://doi.org/10.1111/1469-0691.12539

    Article  PubMed  Google Scholar 

  15. Lai CC, Wang CY, Liu WL, Huang YT, Hsueh PR (2012) Time to positivity of blood cultures of different Candida species causing fungaemia. J Med Microbiol 61:701–704. https://doi.org/10.1099/jmm.0.038166-0

    Article  PubMed  Google Scholar 

  16. Clinical and Laboratory Standards Institute (2012) Reference method for broth dilution antifungal susceptibility testing of yeasts; fourth informational supplement. CLSI document M27-S4 (ISBN 1-56238-863-0 [Print]; ISBN 1-56238-864-9 [Electronic]). Wayne, PA, USA

  17. European Committee on Antimicrobial Susceptibility Testing (2018) Antifungal agents. Breakpoint tables for interpretation of MICs, Version 9.0, valid from 2018–02–12. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Clinical_breakpoints/Antifungal_breakpoints_v_9.0_180212.pdf. Accessed 9 Mar 2022

  18. Takakura S, Fujihara N, Saito T, Kudo T, Iinuma Y, Ichiyama S (2003) National surveillance of species distribution in blood isolates of Candida species in Japan and their susceptibility to six antifungal agents including voriconazole and micafungin. J Antimicrob Chemother 53:283–289. https://doi.org/10.1093/jac/dkh053

    Article  CAS  PubMed  Google Scholar 

  19. Kakeya H, Yamada K, Kaneko Y, Yanagihara K, Tateda K, Maesaki S, Takesue Y, Tomono K, Kadota JI, Kaku M, Miyazaki Y, Kamei K, Shibuya K, Niki Y, Yoshida M, Sei Y (2018) National trends in the distribution of Candida species causing candidemia in Japan from 2003 to 2014. Med Mycol J 59:E19–E22. https://doi.org/10.3314/mmj.17-00014

    Article  PubMed  Google Scholar 

  20. Boonsilp S, Homkaew A, Phumisantiphong U, Nutalai D, Wongsuk T (2021) Species distribution, antifungal susceptibility, and molecular epidemiology of Candida species causing candidemia in a tertiary care hospital in Bangkok. Thailand J Fungi (Basel) 19:577. https://doi.org/10.3390/jof7070577

    Article  CAS  Google Scholar 

  21. Makimura K, Suzuki T, Tamura T, Ikedo M, Hanazawa R, Takahashi Y, Yamada Y, Uchida K, Yamaguchi H (2004) Comparative evaluation of standard dilution method and commercial kit for frozen plate antifungal susceptibility testing of yeasts using 200 clinical isolates. Microbiol Immunol 48:747–753

    Article  CAS  Google Scholar 

  22. Makimura K, Oguri T, Mikami Y, Kume H, Hanazawa R, Abe M, Ikeda R, Shinoda T (2005) Multicenter evaluation of commercial frozen plates for microdilution broth antifungal susceptibility testing of yeasts and comparison of MIC limits recommended in NCCLS M27–A2. Microbiol Immunol 49:97–106

    Article  CAS  Google Scholar 

  23. Xiao M, Chen SCA, Kong F, Xu XL, Yan L, Kong HS, Fan X, Hou X, Cheng JW, Zhou ML, Li Y, Yu SY, Huang JJ, Zhang G, Yang Y, Zhang JJ, Duan SM, Kang W, Wang H, Xu YC (2020) Distribution and antifungal susceptibility of Candida species causing candidemia in China: an update from the CHIF-NET study. J Infect Dis 16:S139–S147. https://doi.org/10.1093/infdis/jiz573

    Article  Google Scholar 

  24. Lindberg E, Hammarström H, Ataollahy N, Kondori N (2019) Species distribution and antifungal drug susceptibilities of yeasts isolated from the blood samples of patients with candidemia. Sci Rep 7:3838. https://doi.org/10.1038/s41598-019-40280-8

    Article  CAS  Google Scholar 

  25. Yang ZH, Song YG, Li RY (2021) A ten-year retrospective study of invasive candidiasis in a tertiary hospital in Beijing. Biomed Environ Sci 34:773–788. https://doi.org/10.3967/bes2021.107

    Article  CAS  PubMed  Google Scholar 

  26. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD (2015) Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62:e1-50. https://doi.org/10.1093/cid/civ933

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S, Bille J, Castagnola E, Cuenca-Estrella M, Donnelly JP, Groll AH, Herbrecht R, Hope WW, Jensen HE, Lass-Flörl C, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Viscoli C, Ullmann AJ (2012) ESCMID Fungal Infection Study Group, ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18(Suppl 7):19–37. https://doi.org/10.1111/1469-0691.12039

    Article  CAS  PubMed  Google Scholar 

  28. Das I, Nightingale P, Patel M, Jumaa P (2011) Epidemiology, clinical characteristics, and outcome of candidemia: experience in a tertiary referral center in the UK. Int J Infect Dis 15(11):e759-763. https://doi.org/10.1016/j.ijid.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  29. Nagao M, Saito T, Doi S, Hotta G, Yamamoto M, Matsumura Y, Matsushima A, Ito Y, Takakura S, Ichiyama S (2012) Clinical characteristics and risk factors of ocular candidiasis. Diagn Microbiol Infect Dis 73:149–152. https://doi.org/10.1016/j.diagmicrobio.2012.03.006

    Article  PubMed  Google Scholar 

  30. Ueda T, Takesue Y, Tokimatsu I, Miyazaki T, Nakada-Motokawa N, Nagao M, Nakajima K, Mikamo H, Yamagishi Y, Kasahara K, Yoshihara S, Ukimura A, Yoshida K, Yoshinaga N, Izumi M, Kakeya H, Yamada K, Kawamura H, Endou K, Yamanaka K, Yoshioka M, Amino K, Ikeuchi H, Uchino M, Miyazaki Y (2019) The incidence of endophthalmitis or macular involvement and the necessity of a routine ophthalmic examination in patients with candidemia. PLoS ONE 14:e0216956. https://doi.org/10.1371/journal.pone.0216956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH, Sobel JD, Pappas PG, Kullberg BJ (2012) Mycoses Study Group, Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 54:1110–1122. https://doi.org/10.1093/cid/cis021

    Article  CAS  PubMed  Google Scholar 

  32. Nucci M, Anaissie E, Betts RF, Dupont BF, Wu C, Buell DN, Kovanda L, Lortholary O (2010) Early removal of central venous catheter in patients with candidemia does not improve outcome: analysis of 842 patients from 2 randomized clinical trials. Clin Infect Dis 51:295–303. https://doi.org/10.1086/653935

    Article  PubMed  Google Scholar 

  33. Liu CY, Huang LJ, Wang WS, Chen TL, Yen CC, Yang MH, Hsiao LT, Liu CY, Chen PM, Chiou TJ (2009) Candidemia in cancer patients: impact of early removal of non-tunneled central venous catheters on outcome. J Infect 58:154–160. https://doi.org/10.1016/j.jinf.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  34. Garnacho-Montero J, Díaz-Martín A, García-Cabrera E, Pérez R, de Pipaón M, Hernández-Caballero C, Lepe-Jiménez JA (2013) Impact on hospital mortality of catheter removal and adequate antifungal therapy in Candida spp. bloodstream infections. J Antimicrob Chemother 68:206–213. https://doi.org/10.1093/jac/dks347

    Article  CAS  PubMed  Google Scholar 

  35. Lee YM, Kim DY, Kim YJ, Park KH, Lee MS (2019) Clinical impacts of delayed central venous catheter removal according to the severity of comorbidities in patients with candidaemia. J Hosp Infect 103:420–427. https://doi.org/10.1016/j.jhin.2019.08.018

    Article  PubMed  Google Scholar 

  36. Nucci M, Rocha Braga P, Nouér SA, Anaissie E (2018) Time of catheter removal in candidemia and mortality. Braz J Infect Dis 22:455–461. https://doi.org/10.1016/j.bjid.2018.10.278

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kutlu M, Sayın-Kutlu S, Alp-Çavuş S, Öztürk ŞB, Taşbakan M, Özhak B, Kaya O, Kutsoylu OE, Şenol-Akar Ş, Turhan Ö, Mermut G, Ertuğrul B, Pullukcu H, Banu Çetin Ç, Avkan-Oğuz V, Yapar N, Yeşim-Metin D, Ergin Ç (2022) Mortality-associated factors of candidemia: a multi-center prospective cohort in Turkey. Eur J Clin Microbiol Infect Dis 41:597–607. https://doi.org/10.1007/s10096-021-04394-0

    Article  PubMed  Google Scholar 

  38. Janum S, Afshari A (2016) Central venous catheter (CVC) removal for patients of all ages with candidaemia. Cochrane Database Syst Rev 7:CD011195. https://doi.org/10.1002/14651858.CD011195.pub2

    Article  PubMed  Google Scholar 

  39. Clancy CJ, Nguyen MH (2013) Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis 56:1284–1292. https://doi.org/10.1093/cid/cit006

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Editorial support in the form of medical writing, assembling tables, and creating high-resolution images based on authors’ detailed directions, collating author comments, copyediting, fact checking, and referencing was provided by Editage, Cactus Communications.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hitoshi Tsukamoto, Takashi Higashi, Takaaki Kodawara, Hiromichi Iwasaki, Nobuyuki Goto.

Data curation: Hitoshi Tsukamoto, Takashi Higashi.

Formal analysis: Hitoshi Tsukamoto, Takashi Higashi, Kyohei Watanabe, Nobuyuki Goto.

Investigation: Hitoshi Tsukamoto, Takashi Higashi, Takaaki Kodawara, Kyohei Watanabe, Yukio Hida.

Project administration: Hiromichi Iwasaki, Nobuyuki Goto.

Supervision: Hiromichi Iwasaki, Nobuyuki Goto.

Validation: Hitoshi Tsukamoto, Takashi Higashi, Takaaki Kodawara, Kyohei Watanabe, Yukio Hida.

Visualization: Hitoshi Tsukamoto.

Writing—original draft: Hitoshi Tsukamoto.

Writing—review and editing: Hitoshi Tsukamoto, Takashi Higashi, Takaaki Kodawara, Kyohei Watanabe, Yukio Hida, Hiromichi Iwasaki, and Nobuyuki Goto.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hitoshi Tsukamoto.

Ethics declarations

Ethics approval

This study was approved by the institutional review board of the Faculty of Medical Sciences, University of Fukui (approval number: 20120089). The study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The requirement for informed consent was waived due to the retrospective nature of the study.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, H., Higashi, T., Kodawara, T. et al. A longitudinal study of Candida bloodstream infections in a Japanese university hospital: species distribution, drug susceptibility, clinical features, and mortality predictors. Eur J Clin Microbiol Infect Dis 41, 1315–1325 (2022). https://doi.org/10.1007/s10096-022-04499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-022-04499-0

Keywords

Navigation