Skip to main content

Advertisement

Log in

Whole-genome sequencing of Egyptian multidrug-resistant Klebsiella pneumoniae isolates: a multi-center pilot study

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Multidrug-resistant (MDR) Klebsiella pneumoniae is a common infectious pathogen. We performed whole-genome sequencing (WGS) of 39 randomly selected, geographically diverse MDR K. pneumoniae from nine Egyptian hospitals. Clinical sources, phenotypic antibiotic resistance, and hyper-mucoviscosity were documented. WGS data were epidemiologically interpreted and tested for the presence of antibiotic resistance and virulence genes. Based on WGS data, we identified 18 classical multi-locus sequence types (MLST), the most common type being ST101 (23.1%) followed by ST147 (17.9%). Phylogenetic analyses identified small numbers of closely related isolates in a few of the centers, so we mostly documented independent nosocomial acquisition or import from public sources. The most common acquired resistance gene found was blaCTX-M-15, detected in 27 isolates (69.2%). Carbapenemase genes encountered were blaNDM-1 (n = 13), blaNDM-5 (n = 1), blaOXA-48 (n = 12), blaOXA-181 (n = 2), and blaKPC2 (n = 1). Seven strains (18%) contained more than a single carbapenemase gene. While searching for virulence-associated genes, sixteen wzi alleles were identified with wzi137, wzi64, and wzi50 most commonly found in ST101, ST147, and ST16, respectively. Yersiniabactin was the most common virulence factor (69.2%). Hyper-mucoviscosity was documented for 6 out of 39 isolates.

This is the first genomic study of MDR K. pneumoniae from Egypt. The study revealed a clear spread of well-known international clones and their associated antimicrobial resistance and (hyper)virulence traits. The clinical situation in Egypt seems to reflect the scenario documented in many other countries and requires close attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdel-Wahab F, Ghoneim M, Khashaba M, El-Gilany AH, Abdel-Hady D (2013) Nosocomial infection surveillance in an Egyptian neonatal intensive care unit. J Hosp Infect. https://doi.org/10.1016/j.jhin.2012.10.017

  2. Amer WH, Khalil HS, Abd EL Wahab MA (2016) Risk factors, phenotypic and genotypic characterization of carpabenem resistant Enterobacteriaceae in Tanta University Hospitals, Egypt. Int J Infect Control 12:1–11

    Article  Google Scholar 

  3. Andrade LN et al (2014) Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J Clin Microbiol. https://doi.org/10.1128/JCM.00088-14

  4. Avgoulea K et al (2018) Characterization of extensively drug-resistant or pandrug-resistant sequence type 147 and 101 OXA-48-producing Klebsiella pneumoniae causing bloodstream infections in patients in an intensive care unit. Antimicrob. Agents Chemother:62

  5. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Becker L et al (2018a) Genome-based analysis of Carbapenemase-producing Klebsiella pneumoniae isolates from German hospital patients, 2008-2014. Antimicrob Resist Infect Control 7:1–12

    Article  Google Scholar 

  7. Becker L et al (2018b) Whole genome sequence analysis of CTX-M-15 producing Klebsiella isolates allowed dissecting a polyclonal outbreak scenario. Front Microbiol:9

  8. Bialek-Davenet S et al (2014) Genomic definition of hypervirulent and multidrug-resistant klebsiella pneumoniae clonal groups. Emerg. Infect. In: Dis. https://doi.org/10.3201/eid2011.140206

    Chapter  Google Scholar 

  9. Brhelova E et al (2017) Investigation of next-generation sequencing data of Klebsiella pneumoniae using web-based tools. J Med Microbiol 66:1673–1683

    Article  CAS  Google Scholar 

  10. Brisse S et al (2009) Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. In: PLoS One. https://doi.org/10.1371/journal.pone.0004982

    Chapter  Google Scholar 

  11. Brisse S et al (2013) Wzi gene sequencing, a rapid method for determination of capsulartype for klebsiella strains. J. Clin. In: Microbiol. https://doi.org/10.1128/JCM.01924-13

    Chapter  Google Scholar 

  12. Brisse S, Passet V, Grimont PAD (2014) Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration th. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.062737-0

  13. Broberg CA, Palacios M, Miller VL (2014) Klebsiella: a long way to go towards understanding this enigmatic jet-setter. In: F1000Prime Rep. https://doi.org/10.12703/P6-64

    Chapter  Google Scholar 

  14. Carniel E (2001) The Yersinia high-pathogenicity island: an iron-uptake island. Microbes and Infection. https://doi.org/10.1016/S1286-4579(01)01412-5

  15. CDC. Antibiotic resistance threats in the United States. (2013).

  16. CLSI (ed) (2018) Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100. Wayne, PA, Clinical and Laboratory Standards Institute

    Google Scholar 

  17. Cubero M et al (2016) Hypervirulent Klebsiella pneumoniae clones causing bacteraemia in adults in a teaching hospital in Barcelona, Spain (2007-2013). Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2015.09.025

  18. Domenico P, Salo RJ, Cross AS, Cunha BA (1994) Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae. Infect Immun

  19. Dong N, Yang X, Zhang R, Chan EW, Chen S (2018 Aug 12) Tracking microevolution events among ST11 carbapenemase-producing hypervirulent Klebsiella pneumoniae outbreak strains. Emerg Microbes Infect 7(1):146. https://doi.org/10.1038/s41426-018-0146-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El Kholy A, Baseem H, Hall GS, Procop GW, Longworth DL (2003) Antimicrobial resistance in Cairo, Egypt 1999-2000: a survey of five hospitals. J Antimicrob Chemother 51:625–630

    Article  Google Scholar 

  21. El-Badawy MF et al (2017) Molecular identification of aminoglycoside-modifying enzymes and plasmid-mediated quinolone resistance genes among Klebsiella pneumoniae clinical isolates recovered from Egyptian patients. Int J Microbiol. https://doi.org/10.1155/2017/8050432

  22. Fang C-T et al (2007) Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis. https://doi.org/10.1086/519262

  23. Feldgarden M et al (2019) Validating the NCBI AMRFinder tool and resistance gene database using antimicrobial resistance genotype-phenotype correlations in a collection of NARMS isolates. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.00483-19

  24. Ghaith DM, Zafer MM, Said HM, Elanwary S, Elsaban S, Al-Agamy MH, Bohol MFF, Bendary MM, Al-Qahtani A, Al-Ahdal MN (2020) Genetic diversity of carbapenem-resistant Klebsiella Pneumoniae causing neonatal sepsis in intensive care unit, Cairo, Egypt. Eur J Clin Microbiol Infect Dis 39(3):583–591. https://doi.org/10.1007/s10096-019-03761-2

    Article  CAS  PubMed  Google Scholar 

  25. Gu D et al (2018) A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(17)30489-9

  26. Guo L et al (2016) Nosocomial outbreak of oxa-48-producing klebsiella pneumoniae in a Chinese hospital: clonal transmission of st147 and st383. PLoS One. https://doi.org/10.1371/journal.pone.0160754

  27. Holt KE et al (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1501049112

  28. Hsu CR, Lin TL, Chen YC, Chou HC, Wang JT (2011) The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology. https://doi.org/10.1099/mic.0.050336-0

  29. Ito R et al (2015) Molecular epidemiological characteristics of Klebsiella pneumonia associated with bacteremia among patients with pneumonia. J Clin Microbiol. https://doi.org/10.1128/JCM.03067-14

  30. Kamel NA, El-tayeb WN, El-Ansary MR, Mansour MT, Aboshanab KM (2018) Phenotypic screening and molecular characterization of carbapenemase-producing Gram-negative bacilli recovered from febrile neutropenic pediatric cancer patients in Egypt. PLoS One. https://doi.org/10.1371/journal.pone.0202119

  31. Khan FA, Hellmark B, Ehricht R, Söderquist B, Jass J (2018) Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-018-3365-9

  32. Kotb S et al (2020) Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated Infections Surveillance Data, 2011-2017. Antimicrob. Resist. Infect. Control 9:2

    Google Scholar 

  33. Lawlor MS, O’Connor C, Miller VL (2007) Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect. Immun. https://doi.org/10.1128/IAI.00372-06

  34. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44(W1):W242–W245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu YM et al (2014) Clinical and molecular characteristics of emerging hypervirulent Klebsiella pneumoniae bloodstream infections in mainland China. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02523-14

  36. Lu B, Lin C, Liu H, Zhang X, Tian Y, Huang Y, Yan H, Qu M, Jia L, Wang Q (2020) Molecular characteristics of Klebsiella pneumoniae isolates from outpatients in sentinel hospitals, Beijing, China, 2010-2019. Front Cell Infect Microbiol. 10:85. https://doi.org/10.3389/fcimb.2020.00085 eCollection 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu J et al (2018) Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China. Antimicrob Resist Infect Control. https://doi.org/10.1186/s13756-018-0415-0

  38. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  39. Martin RM, Bachman MA (2018) Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2018.00004

  40. Mohamed ER et al (2017) Epidemiological typing of multidrug-resistant Klebsiella pneumoniae, which causes paediatric ventilator-associated pneumonia in Egypt. J Med Microbiol. https://doi.org/10.1099/jmm.0.000473

  41. Nachimuthu R et al (2016) Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu. J Chemother. https://doi.org/10.1179/1973947815Y

  42. Navon-Venezia S, Kondratyeva K, Carattoli A (2017) Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fux013

  43. Nawfal Dagher T, Azar E, Al-Bayssari C, Chamieh AS, Rolain JM (2019) First detection of colistin-resistant Klebsiella pneumoniae in association with NDM-5 Carbapenemase isolated from clinical Lebanese patients. Microb Drug Resist. https://doi.org/10.1089/mdr.2018.0383

  44. Nordmann P (2014) Carbapenemase-producing Enterobacteriaceae: overview of a major public health challenge. Med Maladies Infect. https://doi.org/10.1016/j.medmal.2013.11.007

  45. Orlando G et al (2017) Session: EP188 update on colistin resistance-from lab to hospital category: 3d . Resistance mechanisms Whole-genome sequencing for a carbapenem- and colistin-resistant Klebsiella pneumoniae hospital outbreak and Virology Unit. Univ Hosp Pol:4–6

  46. Ørskov I, Ørskov F (1984) 4 Serotyping of Klebsiella. Methods Microbiol. https://doi.org/10.1016/S0580-9517(08)70449-5

  47. Pan YJ et al (2015) Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep. https://doi.org/10.1038/srep15573

  48. Papagiannitsis CC et al (2016) Characterisation of IncA/C2 plasmids carrying an In416-like integron with the blaVIM-19 gene from Klebsiella pneumoniae ST383 of Greek origin. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2015.12.001

  49. Papagiannitsis CC et al (2015) Survey of metallo-β-lactamase-producing Enterobacteriaceae colonizing patients in European ICUs and rehabilitation units, 2008-11. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkv055 PMID: 24777092 Free PMC article

  50. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev

  51. Rimoldi SG et al (2017) Whole genome sequencing for the molecular characterization of carbapenem-resistant Klebsiella pneumoniae strains isolated at the Italian ASST Fatebenefratelli Sacco Hospital, 2012-2014. BMC Infect Dis. https://doi.org/10.1186/s12879-017-2760-7

  52. Ruppé E et al (2019) From genotype to antibiotic susceptibility phenotype in the order Enterobacterales: a clinical perspective. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2019.09.018

  53. Russo TA, Olson R, MacDonald U, Beanan J (2015) D. B. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun

  54. Sánchez-López J et al (2019) Hypermucoviscous Klebsiella pneumoniae: a challenge in community acquired infection. IDCases. https://doi.org/10.1016/j.idcr.2019.e00547

  55. Shon AS, Bajwa RPS, Russo TA (2013) Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. https://doi.org/10.4161/viru.22718

  56. Talaat M et al (2016) National surveillance of health care–associated infections in Egypt: developing a sustainable program in a resource-limited country. Am. J. Infect. Control 44:1296–1301

    Article  Google Scholar 

  57. Tamma PD et al (2019) Applying rapid whole-genome sequencing to predict phenotypic antimicrobial susceptibility testing results among carbapenem-resistant Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01923-18

  58. Treangen TJ, Ondov BD, Koren S, Phillippy AM (2014) The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15(11):524. https://doi.org/10.1186/s13059-014-0524-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Turton J et al (2019) Hybrid resistance and virulence plasmids in “high-risk” clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms. https://doi.org/10.3390/microorganisms7090326

  60. Villa L et al (2017) Diversity, virulence, and antimicrobial resistance of the KPC producing Klebsiella pneumoniae ST307 clone. Microb Genomics. https://doi.org/10.1099/mgen.0.000110

  61. Wasfi R, Elkhatib WF, Ashour HM (2016) Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep. https://doi.org/10.1038/srep38929

  62. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R, Thomson NR, Holt KE (2016) Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2(12):e000102. https://doi.org/10.1099/mgen.0.000102 eCollection 2016 Dec

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xu M et al (2019) High prevalence of KPC-2-producing hypervirulent Klebsiella pneumoniae causing meningitis in Eastern China. Infect Drug Resist. https://doi.org/10.2147/IDR.S191892

  64. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67(11):2640–2644. https://doi.org/10.1093/jac/dks261

Download references

Acknowledgements

We acknowledge the support of the Science and Technology Development Fund (STDF) and the staff of the Molecular Research and Sequencing Laboratory, Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.

Funding

The study was funded by capacity building grant number 22838 from the Science and Technology Development Fund (STDF) of the Academy of Scientific Research and Technology (ASRT) in Egypt, "Establishing a Reference Laboratory For Rapid Diagnosis of Emerging Infections and Investigation of Outbreaks,” principal investigator: Prof Amani El Kholy. Mattia Palmieri was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 675412 (New Diagnostics for Infectious Diseases [ND4ID]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani El-Kholy.

Ethics declarations

Conflict of interest

AvB, CM, and MP are or were employees of bioMérieux. bioMérieux is a company developing, marketing, and selling tests in the infectious diseases domain.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 21 kb)

ESM 2

(XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherif, M., Palmieri, M., Mirande, C. et al. Whole-genome sequencing of Egyptian multidrug-resistant Klebsiella pneumoniae isolates: a multi-center pilot study. Eur J Clin Microbiol Infect Dis 40, 1451–1460 (2021). https://doi.org/10.1007/s10096-021-04177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04177-7

Keywords

Navigation