Skip to main content

Advertisement

Log in

Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a non-coding subclass of endogenous small regulatory RNAs, with about 18–25 nucleotides length which play a critical role in the regulation of gene expression at the post-transcriptional level in eukaryotes. Aberrant expression of miRNAs has the potential to become powerful non-invasive biomarkers in pathological diagnosis and prognosis of different disorders including infectious diseases. Parasite’s life cycle may require the ability to respond to environmental and developmental signals through miRNA-mediated gene expressions. Over the last years, thousands of miRNAs have been identified in the helminthic and protozoan parasites and many pieces of evidence have demonstrated the functional role of miRNAs in the parasites’ life cycle. Detection of these miRNAs in biofluids of infected hosts as prognostic and diagnostic biomarkers in infectious diseases is growing rapidly. In this review, we have highlighted altered expressions of host miRNAs, detected parasitic miRNAs in the infected hosts, and suggested some perspectives for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leclercq M, Diallo AB, Blanchette M (2016) Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences. Nucleic Acids Res 45(2):556–566

    PubMed  PubMed Central  Google Scholar 

  2. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149(3):515–524

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    CAS  Google Scholar 

  4. Bracht JR et al (2010) Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans. Dev Biol 348(2):210–221

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen C-Z et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    CAS  PubMed  Google Scholar 

  6. Rossi RL et al (2011) Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol 12(8):796

    CAS  PubMed  Google Scholar 

  7. Aalaei-andabili SH, Rezaei N (2013) Toll like receptor (TLR)-induced differential expression of microRNAs (MiRs) and immune response against infection: a systematic review. J Infect 67(4):251–264

    PubMed  Google Scholar 

  8. Quinn EM et al (2013) MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PloS one 8(4):e62232

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Steiner DF et al (2011) MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells. Immunity 35(2):169–181

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bagheri A et al (2019) A panel of noncoding RNAs in non–small-cell lung cancer. J Cell Biochem 120(5):8280–8290

    CAS  Google Scholar 

  11. Kuehbacher A et al (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101(1):59–68

    CAS  PubMed  Google Scholar 

  12. Bartel DP (2018) Metazoan microRNAs. Cell 173(1):20–51

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwarzenbach H et al (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11(3):145

    CAS  PubMed  Google Scholar 

  14. Wei Y et al (2014) Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem 289(15):10270–10275

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Akbari Kordkheyli V., et al., 2019 Effects of quercetin on microRNAs: a mechanistic review. J Cell Biochem.

  16. Best A et al (2005) In vitro synthesized small interfering RNAs elicit RNA interference in African trypanosomes AN IN VITRO AND IN VIVO ANALYSIS. J Biol Chem 280(21):20573–20579

    CAS  PubMed  Google Scholar 

  17. Krautz-Peterson G, Skelly PJ (2008) Schistosoma mansoni: the dicer gene and its expression. Exp Parasitol 118(1):122–128

    CAS  PubMed  Google Scholar 

  18. Prucca CG et al (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456(7223):750

    CAS  PubMed  Google Scholar 

  19. Militello KT et al (2008) Antisense RNA and RNAi in protozoan parasites: working hard or hardly working? Mol Biochem Parasitol 157(2):117–126

    CAS  PubMed  Google Scholar 

  20. Budak H et al (2015) MicroRNA nomenclature and the need for a revised naming prescription. Brief Funct Genomics 15(1):65–71

    PubMed  Google Scholar 

  21. Kozomara A, Griffiths-Jones S (2013) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(D1):D68–D73

    PubMed  PubMed Central  Google Scholar 

  22. Wang X (2014) Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 30(10):1377–1383

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohr, A.M. and J.L. Mott 2015. Overview of microRNA biology. in Seminars in liver disease. Thieme Medical Publishers.

  24. Mathonnet G et al (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317(5845):1764–1767

    CAS  PubMed  Google Scholar 

  25. Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10(9):542

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bagheri A et al (2017) Altered miR-223 expression in sputum for diagnosis of non-small cell lung cancer. Avicenna J Med Biotechnol 9(4):189

    PubMed  PubMed Central  Google Scholar 

  27. Churcher TS et al (2017) Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in naive and vaccinated hosts. PLoS Pathog 13(1):e1006108

    PubMed  PubMed Central  Google Scholar 

  28. LaMonte G et al (2012) Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12(2):187–199

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Carlton JM et al (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419(6906):512

    CAS  PubMed  Google Scholar 

  30. Xue X et al (2008) No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection. Malar J 7(1):47

    PubMed  PubMed Central  Google Scholar 

  31. Schmidt CQ, Kennedy AT, Tham W-H (2015) More than just immune evasion: hijacking complement by Plasmodium falciparum. Mol Immunol 67(1):71–84

    CAS  PubMed  Google Scholar 

  32. Chamnanchanunt S et al (2015) Downregulation of plasma miR-451 and miR-16 in Plasmodium vivax infection. Exp Parasitol 155:19–25

    CAS  PubMed  Google Scholar 

  33. Baro B et al (2017) Plasmodium vivax gametocytes in the bone marrow of an acute malaria patient and changes in the erythroid miRNA profile. PLoS Negl Trop Dis 11(4):e0005365

    PubMed  PubMed Central  Google Scholar 

  34. Wendlandt E.B. 2013, Macrophage microRNA and mRNA responses to stimulation of TLRs or upon infection with Leishmania infantum chagasi.

  35. Duclos S, Desjardins M (2000) Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol 2(5):365–377

    CAS  PubMed  Google Scholar 

  36. Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 18(2):293–305

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaye MP et al (1994) Deficient expression of co-stimulatory molecules onLeishmania-infected macrophages. 24:2850–2854

  38. Meier CL, Svensson M, Kaye PM (2003) Leishmania-Induced inhibition of macrophage antigen presentation analyzed at the single-cell level. J Immunol 171(12):6706

    CAS  PubMed  Google Scholar 

  39. Shadab M. and N. Ali 2011, Evasion of host defence by Leishmania donovani: subversion of signaling pathways. Mol Biol Int, 2011.

  40. Ehrlich A et al (2014) The immunotherapeutic role of regulatory T cells in <em>Leishmania (Viannia) panamensis</em> infection. J Immunol 193(6):2961

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hashemi N et al (2018) Expression of hsa Let-7a MicroRNA of macrophages infected by Leishmania major. Int J Med Res Health Sci 5(10):27–32

    Google Scholar 

  42. Geraci NS, Tan JC, McDowell MA (2015) Characterization of micro RNA expression profiles in L eishmania-infected human phagocytes. Parasite Immunol 37(1):43–51

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Moncayo A, Ortiz Yanine M (2006) An update on Chagas disease (human American trypanosomiasis). Ann Trop Med Parasitol 100(8):663–677

    CAS  PubMed  Google Scholar 

  44. Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115(1-2):14–21

    PubMed  Google Scholar 

  45. Ponte-Sucre A (2016) An overview of trypanosoma brucei infections: an intense host-parasite interaction. Front Microbiol 7:2126

    PubMed  PubMed Central  Google Scholar 

  46. Aksoy E et al (2016) Mammalian African trypanosome VSG coat enhances tsetse’s vector competence. Proc Natl Acad Sci 113(25):6961–6966

    CAS  PubMed  Google Scholar 

  47. Batram C et al (2014) Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei. Elife 3:e02324

    PubMed  PubMed Central  Google Scholar 

  48. Namangala B et al (2001) Relative contribution of interferon-γ and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183(12):1794–1800

    CAS  PubMed  Google Scholar 

  49. Stijlemans B et al (2018) African trypanosomiasis-associated anemia: the contribution of the interplay between parasites and the mononuclear phagocyte system. Front Immunol 9:218

    PubMed  PubMed Central  Google Scholar 

  50. Simo G et al (2015) Micro RNA expression profiles in peripheral blood cells of rats that were experimentally infected with Trypanosoma congolense and different Trypanosoma brucei subspecies. Microbes Infect 17(8):596–608

    CAS  PubMed  Google Scholar 

  51. Mallick B, Ghosh Z, Chakrabarti J (2008) MicroRNA switches in Trypanosoma brucei. Biochem Biophys Res Commun 372(3):459–463

    CAS  PubMed  Google Scholar 

  52. Coakley G, Buck AH, Maizels RM (2016) Host parasite communications—messages from helminths for the immune system: parasite communication and cell-cell interactions. Mol Biochem Parasitol 208(1):33–40

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zamanian M et al (2015) Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi. PLoS Negl Trop Dis 9(9):e0004069

    PubMed  PubMed Central  Google Scholar 

  54. Buck AH et al (2014) Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 5:5488

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nowacki FC et al (2015) Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni. J Extracell Vesicles 4(1):28665

    PubMed  Google Scholar 

  56. Britton C et al (2015) Application of small RNA technology for improved control of parasitic helminths. Vet Parasitol 212(1-2):47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hewitson JP, Grainger JR, Maizels RM (2009) Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 167(1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Marcilla A et al (2012) Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PloS One 7(9):e45974

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo X, Zheng Y (2017) Expression profiling of circulating miRNAs in mouse serum in response to Echinococcus multilocularis infection. Parasitology 144(8):1079–1087

    CAS  PubMed  Google Scholar 

  60. Cheng G et al (2013) Deep sequencing-based identification of pathogen-specific microRNAs in the plasma of rabbits infected with Schistosoma japonicum. Parasitology 140(14):1751–1761

    CAS  PubMed  Google Scholar 

  61. Hoy AM et al (2014) Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection. PLoS Negl Trop Dis 8(2):e2701

    PubMed  PubMed Central  Google Scholar 

  62. Tritten L et al (2014) Detection of circulating parasite-derived microRNAs in filarial infections. PLoS Negl Trop Dis 8(7):e2971

    PubMed  PubMed Central  Google Scholar 

  63. Quintana JF et al (2015) Extracellular Onchocerca-derived small RNAs in host nodules and blood. Parasit Vectors 8(1):58

    PubMed  PubMed Central  Google Scholar 

  64. Tritten L et al (2014) Loa loa and Onchocerca ochengi miRNAs detected in host circulation. Mol Biochem Parasitol 198(1):14–17

    CAS  PubMed  Google Scholar 

  65. He X et al (2013) Host serum miR-223 is a potential new biomarker for Schistosoma japonicum infection and the response to chemotherapy. Parasit Vectors 6(1):272

    PubMed  PubMed Central  Google Scholar 

  66. Burke ML et al (2010) Temporal expression of chemokines dictates the hepatic inflammatory infiltrate in a murine model of schistosomiasis. PLoS Negl Trop Dis 4(2):e598

    PubMed  PubMed Central  Google Scholar 

  67. Zhu L et al (2015) Altered levels of circulating miRNAs are associated Schistosoma japonicum infection in mice. Parasit Vectors 8(1):196

    PubMed  PubMed Central  Google Scholar 

  68. Silakit R et al (2014) Circulating mi R-192 in liver fluke-associated cholangiocarcinoma patients: a prospective prognostic indicator. J Hepatobiliary-Pancreat Sci 21(12):864–872

    PubMed  Google Scholar 

  69. Plieskatt J et al (2015) A microRNA profile associated with Opisthorchis viverrini-induced cholangiocarcinoma in tissue and plasma. BMC Cancer 15(1):309

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran (Grant number: 6334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abouzar Bagheri or Mahdi Fakhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalehnoei, H., Bagheri, A., Fakhar, M. et al. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur J Clin Microbiol Infect Dis 39, 395–402 (2020). https://doi.org/10.1007/s10096-019-03715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03715-8

Keywords

Navigation