Skip to main content
Log in

Improvement in the detection of enteric protozoa from clinical stool samples using the automated urine sediment analyzer sediMAX® 2 compared to sediMAX® 1

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Detection of intestinal parasites from fecal samples is routinely performed by direct wet mount examination. This method requires skilled personnel, and it is time consuming. The aim of this work is to demonstrate the usefulness of the newer automated urinary sediment analyser sediMAX 2 for a fast detection of intestinal protozoa in stool samples. A total of 700 consecutively preserved samples consisting of 70 positives and 630 negatives were analyzed. SediMAX 2 takes digital images of each sediment sample, and analysis was conducted using a dilution of stool specimens, allowing determination of typical morphology. Compared to manual microscopy, sediMAX 2 showed sensitivity and specificity of 100 % in the detection of intestinal parasites, as also recently demonstrated for sediMAX 1. However, all clinically important human protozoa were detected using only 15 images for each specimen, compared to 30 images required in sediMAX 1 analysis. Moreover, changing manually the focus, it is possible to carry out a discrimination between morphologically identical Entamoeba complex members, including the pathogenic E. histolytica and the non-pathogenic E. dispar, E. moshkovskii and E. Bangladeshi, from the non-pathogenic Entamoeba coli based on the number of nuclei present in the cells. This study presents sediMAX 2 as an automatic aid to traditional microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Okhuysen PC, White AC (1999) Parasitic infections of the intestine. Curr Opin Infect Dis 12:467–472

    Article  CAS  PubMed  Google Scholar 

  2. Petri WA, Haque R, Lyerly D, Vines RR (2000) Estimating the impact of amebiasis on health. Parasitol Today 16:320–321

    Article  PubMed  Google Scholar 

  3. Davis AN, Haque R, Petri WA (2002) Update on protozoan parasites of the intestine. Curr Opin Gastroenterol 18:10–14

    Article  PubMed  Google Scholar 

  4. Haque R (2007) Human intestinal parasites. J Health Popul Nutr 25:387–391

    PubMed  PubMed Central  Google Scholar 

  5. Jones KE et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  Google Scholar 

  6. Fletcher SM, Stark D, Harkness J, Ellis J (2012) Enteric protozoa in the developed world: a public health perspective. Clin Microbiol Rev 25:420–429

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khanna V, Tilak K, Rasheed S, Mukhopadhyay C (2014) Identification and preservation of intestinal parasites using methylene blue-glycerol mount: a new approach to stool microscopy. J Parasitol Res 672018. doi:10.1155/2014/672018

  8. McHardy IH, Wu M, Shimizu-Cohen R, Couturier MR, Humphries RM (2014) Detection of intestinal protozoa in clinical laboratory. J Clin Microbiol 52:712–720

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stark D, Al-Qassab SE, Barratt JL, Stanley K, Roberts T, Marriott D, Harkness J, Ellis JT (2011) Evaluation of multiplex tandem real-time PCR for detection of Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis in clinical stool samples. J Clin Microbiol 49(1):257–262

    Article  CAS  PubMed  Google Scholar 

  10. Kurt Ö, Doğruman Al F, Tanyüksel M (2016) Eradication of Blastocystis in humans: really necessary for all? Parasitol Int. doi:10.1016/j.parint.2016.01.010

    PubMed  Google Scholar 

  11. Garcia LS (2009) Practical guide to diagnostic parasitology, 2nd edn. ASM Press, Washington DC

    Google Scholar 

  12. Branda JA, Lin TY, Rosenberg ES, Halpern EF, Ferraro MJ (2006) A rational approach to the stool ova and parasite examination. Clin Infect Dis 42(7):972–978

    Article  PubMed  Google Scholar 

  13. Yansouni CP, Merckx J, Libman MD, Ndao M (2014) Recent advances in clinical parasitology diagnostics. Curr Infect Dis Rep 16:434–442

    Article  PubMed  Google Scholar 

  14. Nazer H, Greer W, Donnelly K, Mohamed AE, Yaish H, Kagalwalla A, Pavillard R (1993) The need for three stool specimens in routine laboratory examinations for intestinal parasites. Br J Clin Pract 47:76–78

    CAS  PubMed  Google Scholar 

  15. Hiatt RA, Markell EK, Ng E (1995) How many stool examinations are necessary to detect pathogenic intestinal protozoa? Am J Trop Med Hyg 53:36–39

    CAS  PubMed  Google Scholar 

  16. Stark D, Roberts T, Ellis JT, Marriott D, Harkness J (2014) Evaluation of the EasyScreen™ enteric parasite detection kit for the detection of Blastocystis spp., Cryptosporidium spp., Dientamoeba fragilis, Entamoeba complex, and Giardia intestinalis from clinical stool samples. Diagn Microbiol Infect Dis 78(2):149–152

    Article  CAS  PubMed  Google Scholar 

  17. Zaman Z, Fogazzi GB, Garigali G, Croci MD, Bayer G, Kranicz T (2010) Urine sediment analysis: analytical and diagnostic performance of sediMAX® - a new automated microscopy image-based urine sediment analyzer. Clin Chim Acta 411:147–154

    Article  CAS  PubMed  Google Scholar 

  18. Intra J, Taverna E, Sala MR, Falbo R, Cappellini F, Brambilla P (2016) Detection of intestinal parasites by use of the cuvette-based automated microscopy analyser sediMAX®. Clin Microbiol Infect 22(3):279–284

    Article  CAS  PubMed  Google Scholar 

  19. Garcia LS, Shimizu RY, Brewer TC, Bruckner DA (1983) Evaluation of intestinal parasite morphology in polyvinyl alcohol preservative: comparison of copper sulfate and mercuric chloride bases for use in Schaudinn fixative. J Clin Microbiol 17:1092–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia LS, Shimizu RY, Shum A, Bruckner DA (1993) Evaluation of intestinal protozoan morphology in polyvinyl alcohol preservative: comparison of zinc sulfate and mercuric chloride-based compounds for use in Schaudinn’s fixative. J Clin Microbiol 31:307–310

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia LS, Shimizu RY (1998) Evaluation of intestinal protozoan morphology in human fecal specimens preserved in EcoFix: comparison of Wheatley’s trichrome stain and EcoStain. J Clin Microbiol 36:1974–1976

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pietrzak-Johnston SM, Bishop H, Wahlquist S, Moura H, Da Silva ND, Nguyen-Dihn P (2000) Evaluation of commercially available preservatives for laboratory detection of helminths and protozoa in human fecal specimens. J Clin Microbiol 38:1959–1964

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stephan C, Wesseling S, Schink T, Jung K (2003) Comparison of eight computer programs for receiver-operating characteristic analysis. Clin Chem 49:433–439

    Article  CAS  PubMed  Google Scholar 

  24. CLSI (2005) Procedures for the recovery and identification of parasites from the intestinal tract; approved guideline-Second edition. CLSI Document M28-A2. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  25. Koltas IS, Akyar I, Elgun G, Kocagoz T (2014) Feconomics®: a new and more convenient method, the routine diagnosis of intestinal parasitic infections. Parasitol Res 113(7):2503–2508

    Article  PubMed  Google Scholar 

  26. Kehl KC, Cicirello H, Havens PL (1995) Comparison of four different methods for the detection of Cryptosporidium species. J Clin Microbiol 33:416–418

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia LS, Shimizu RY (1997) Evaluation of nine immunoassays kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens. J Clin Microbiol 35:1526–1529

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Colombo Laura, Savarino Cinzia, Santambrogio Marco, and Caimi Silvio of Desio Hospital for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Intra.

Ethics declarations

Funding

No specific funding was used for this research.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article did not contain any studies with human participants and/or animals.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intra, J., Sala, M.R., Falbo, R. et al. Improvement in the detection of enteric protozoa from clinical stool samples using the automated urine sediment analyzer sediMAX® 2 compared to sediMAX® 1. Eur J Clin Microbiol Infect Dis 36, 147–151 (2017). https://doi.org/10.1007/s10096-016-2788-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2788-4

Keywords

Navigation