Skip to main content

Advertisement

Log in

Characterisation of Clostridium difficile strains isolated from Groote Schuur Hospital, Cape Town, South Africa

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The C. difficile infection rate in South Africa is concerning. Many strains previously isolated from diarrhetic patients at Groote Schuur Hospital were ribotype 017. This study further characterised these strains with respect to their clonal relationships, antibiotic susceptibility, toxin production and various attributes impacting on pathogen colonisation. Multilocus variable-number tandem-repeat analysis (MLVA) was used to characterise all C. difficile isolates. Antibiotic susceptibility was determined by E-test and PCR-based analysis of the ermB, gyrA and gyrB genes. Auto-aggregation of cells was measured in broth, and biofilm formation observed in 24-well plates. Toxins were measured using the Wampole C DIFF TOX A/B II kit. Most isolates belonged to the ribotype 017 group. Identical MLVA types occurred in different wards over time, and several patients were infected with identical strains. All isolates were susceptible to vancomycin and metronidazole, but some ribotype 017 isolates showed reduced metronidazole susceptibility (≥2 mg l−1). Sixty-nine percent of ribotype 017 isolates were resistant to moxifloxacin, and 94 % to erythromycin, compared to 0 % and 17 % resistance, respectively, in non-ribotype 017 isolates. The ermB gene and mutations in the gyrA and/or gyrB genes were linked to erythromycin and moxifloxacin resistance, respectively. Ribotype 017 isolates auto-aggregated more strongly than other isolates and produced lower levels of the TcdB toxin than a reference strain. Certain strains produced strong biofilms. Patient-to-patient transfer and unique infection events could cause the predominance of ribotype 017 strains in the cohort. Multi-drug resistant strains are a potential reservoir for future infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levy AR, Szabo SM, Lozano-Ortega G, Lloyd-Smith E, Leung V, Lawrence R, Romney MG (2015) Incidence and costs of Clostridium difficile infections in Canada. Open Forum Infect Dis 2:ofv076. doi:10.1093/ofid/ofv076

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wiegand PN, Nathwani D, Wilcox MH, Stephens J, Shelbaya A, Haider S (2012) Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. J Hosp Infect 81:1–14. doi:10.1016/j.jhin.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  3. Gabriel L, Beriot-Mathiot A (2014) Hospitalization stay and costs attributable to Clostridium difficile infection: a critical review. J Hosp Infect 88:12–21. doi:10.1016/j.jhin.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  4. Chitnis AS, Holzbauer SM, Belflower RM, Winston LG, Bamberg WM, Lyons C, Farley MM, Dumyati GK, Wilson LE, Beldavs ZG, Dunn JR, Gould LH, MacCannell DR, Gerding DN, McDonald LC, Lessa FC (2013) Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Int Med 173:1359–67. doi:10.1001/jamainternmed.2013.7056

    Article  Google Scholar 

  5. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–34. doi:10.1056/NEJMoa1408913

    Article  CAS  PubMed  Google Scholar 

  6. Aguayo C, Flores R, Lévesque S, Araya P, Ulloa S, Lagos J, Hormazabal JC, Tognarelli J, Ibáñez D, Pidal P, Duery O, Olivares B, Fernández J (2015) Rapid spread of Clostridium difficile NAP1/027/ST1 in Chile confirms the emergence of the epidemic strain in Latin America. Epidemiol Infect 143:3069–73. doi:10.1017/S0950268815000023

    Article  CAS  PubMed  Google Scholar 

  7. Quesada-Gómez C, Rodríguez C, Gamboa-Coronado M del M, Rodríguez-Cavallini E, Du T, Mulvey MR, Villalobos-Zúñiga M, Boza-Cordero R (2010) Emergence of Clostridium difficile NAP1 in Latin America. J Clin Microbiol 48:669–70. doi:10.1128/JCM.02196-09

    Article  PubMed  Google Scholar 

  8. Bauer MP, Notermans DW, van Benthem BHB, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ, ECDIS Study Group (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73. doi:10.1016/S0140-6736(10)61266-4

    Article  PubMed  Google Scholar 

  9. Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, Wilcox MH, Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group (2015) Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect Dis. 21:248.e9-248.e16. doi: 10.1016/j.cmi.2014.09.017

  10. Hawkey PM, Marriott C, Liu WE, Jian ZJ, Gao Q, Ling TKW, Chow V, So E, Chan R, Hardy K, Xu L, Manzoor S (2013) Molecular epidemiology of Clostridium difficile infection in a major Chinese hospital: an underrecognized problem in Asia? J Clin Microbiol 51:3308–13. doi:10.1128/JCM.00587-13

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huang H, Weintraub A, Fang H, Wu S, Zhang Y, Nord CE (2010) Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe 16:633–5. doi:10.1016/j.anaerobe.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  12. Lee J-H, Lee Y, Lee K, Riley TV, Kim H (2014) The changes of PCR ribotype and antimicrobial resistance of Clostridium difficile in a tertiary care hospital over 10 years. J Med Microbiol 63:819–23. doi:10.1099/jmm.0.072082-0

    Article  CAS  PubMed  Google Scholar 

  13. Kim H, Jeong SH, Roh KH, Hong SG, Kim JW, Shin M-G, Kim M-N, Shin HB, Uh Y, Lee H, Lee K (2010) Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium difficile isolated from 12 hospitals in South Korea. Korean J Lab Med 30:491–7. doi:10.3343/kjlm.2010.30.5.491

    Article  CAS  PubMed  Google Scholar 

  14. Ngamskulrungroj P, Sanmee S, Putsathit P, Piewngam P, Elliott B, Riley TV, Kiratisin P (2015) Molecular epidemiology of Clostridium difficile infection in a large teaching hospital in Thailand. PLoS One 10:e0127026. doi:10.1371/journal.pone.0127026

    Article  PubMed  PubMed Central  Google Scholar 

  15. Drudy D, Harnedy N, Fanning S, Hannan M, Kyne L (2007) Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile. Infect Control Hosp Epidemiol 28:932–40. doi:10.1086/519181

    Article  PubMed  Google Scholar 

  16. Shin B-M, Kuak EY, Yoo SJ, Shin WC, Yoo HM (2008) Emerging toxin A-B+ variant strain of Clostridium difficile responsible for pseudomembranous colitis at a tertiary care hospital in Korea. Diagn Microbiol Infect Dis 60:333–7. doi:10.1016/j.diagmicrobio.2007.10.022

    Article  CAS  PubMed  Google Scholar 

  17. Cairns MD, Preston MD, Lawley TD, Clark TG, Stabler RA, Wren BW (2015) Genomic epidemiology of a protracted hospital outbreak caused by a toxin A-negative Clostridium difficile sublineage PCR ribotype 017 strain in London. Engl J Clin Microbiol 53:3141–7. doi:10.1128/JCM.00648-15

    Article  CAS  Google Scholar 

  18. Goorhuis A, Legaria MC, van den Berg RJ, Harmanus C, Klaassen CHW, Brazier JS, Lumelsky G, Kuijper EJ (2009) Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires. Argent Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 15:1080–6. doi:10.1111/j.1469-0691.2009.02759.x

    CAS  Google Scholar 

  19. Drudy D, Quinn T, O’Mahony R, Kyne L, O’Gaora P, Fanning S (2006) High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile. J Antimicrob Chemother 58:1264–7. doi:10.1093/jac/dkl398

    Article  CAS  PubMed  Google Scholar 

  20. Kullin B, Meggersee R, D’Alton J, Galvão B, Rajabally N, Whitelaw A, Bamford C, Reid SJ, Abratt VR (2015) Prevalence of gastrointestinal pathogenic bacteria in patients with diarrhoea attending Groote Schuur Hospital, Cape Town. S Afr Med J 105:121–5. doi:10.7196/samj.8654

    Article  PubMed  Google Scholar 

  21. Lekalakala MR, Lewis E, Hoosen AA (2010) Clostridium difficile infections in a tertiary hospital: value of surveillance. J Hosp Infect 75:328–9. doi:10.1016/j.jhin.2010.03.016

    Article  CAS  PubMed  Google Scholar 

  22. Rajabally NM, Pentecost M, Pretorius G, Whitelaw A, Mendelson M, Watermeyer G (2013) The Clostridium difficile problem: a South African tertiary institution’s prospective perspective. S Afr Med J 103:168–72. doi:10.7196/samj.6012

    Article  CAS  PubMed  Google Scholar 

  23. Samie A, Obi CL, Franasiak J, Archbald-Pannone L, Bessong PO, Alcantara-Warren C, Guerrant RL (2008) PCR detection of Clostridium difficile triose phosphate isomerase (tpi), toxin A (tcdA), toxin B (tcdB), binary toxin (cdtA, cdtB), and tcdC genes in Vhembe District, South Africa. Am J Trop Med Hyg 78:577–85

    CAS  PubMed  Google Scholar 

  24. Rajabally N, Kullin B, Ebrahim K, Brock T, Weintraub A, Whitelaw A, Bamford C, Watermeyer G, Thomson S, Abratt V, Reid S (2016) A comparison of Clostridium difficile diagnostic methods for identification of local strains in a South African centre. J Med Microbiol. doi:10.1099/jmm.0.000231

    PubMed  Google Scholar 

  25. Eckert C, Vromman F, Halkovich A, Barbut F (2011) Multilocus variable-number tandem repeat analysis: a helpful tool for subtyping French Clostridium difficile PCR ribotype 027 isolates. J Med Microbiol 60:1088–94. doi:10.1099/jmm.0.029009-0

    Article  CAS  PubMed  Google Scholar 

  26. Marsh JW, O’Leary MM, Shutt KA, Pasculle AW, Johnson S, Gerding DN, Muto CA, Harrison LH (2006) Multilocus variable-number tandem-repeat analysis for investigation of Clostridium difficile transmission in hospitals. J Clin Microbiol 44:2558–66. doi:10.1128/JCM.02364-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van den Berg RJ, Schaap I, Templeton KE, Klaassen CHW, Kuijper EJ (2007) Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol 45:1024–8. doi:10.1128/JCM.02023-06

    Article  PubMed  Google Scholar 

  28. Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit J-C (2002) gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother 46:3418–21. doi:10.1128/aac.46.11.3418-3421.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson S, Samore MH, Farrow KA, Killgore GE, Tenover FC, Lyras D, Rood JI, DeGirolami P, Baltch AL, Rafferty ME, Pear SM, Gerding DN (1999) Epidemics of diarrhea caused by a clindamycin-resistant strain of Clostridium difficile in four hospitals. N Engl J Med 341:1645–51. doi:10.1056/NEJM199911253412203

    Article  CAS  PubMed  Google Scholar 

  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–9. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salipante SJ, Hall BG (2011) Inadequacies of minimum spanning trees in molecular epidemiology. J Clin Microbiol 49:3568–75. doi:10.1128/JCM.00919-11

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bastian, M, Heymann, S, Jacomy, M (2009) Gephi: an open source software for exploring and manipulating networks [Internet]. 2009. doi: http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154. Accessed 02 July 2016

  33. Eyre DW, Fawley WN, Best EL, Griffiths D, Stoesser NE, Crook DW, Peto TEA, Walker AS, Wilcox MH (2013) Comparison of multilocus variable-number tandem-repeat analysis and whole-genome sequencing for investigation of Clostridium difficile transmission. J Clin Microbiol 51:4141–9. doi:10.1128/JCM.01095-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clinical and Laboratory Standards Institute (2014) Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S24, 1st edn. Clinical and Laboratory Standards Institute, Wayne, IN

    Google Scholar 

  35. EUCAST (2016) The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, 2016 (http://www.eucast.org).

  36. Baines SD, O’Connor R, Freeman J, Fawley WN, Harmanus C, Mastrantonio P, Kuijper EJ, Wilcox MH (2008) Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J Antimicrob Chemother 62:1046–52. doi:10.1093/jac/dkn313

    Article  CAS  PubMed  Google Scholar 

  37. Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194:3307–16. doi:10.1128/JB.00100-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tasteyre A, Barc MC, Karjalainen T, Dodson P, Hyde S, Bourlioux P, Borriello P (2000) A Clostridium difficile gene encoding flagellin. Microbiol Read Engl 146(Pt 4):957–66. doi:10.1099/00221287-146-4-957

    Article  CAS  Google Scholar 

  39. Dawson LF, Valiente E, Faulds-Pain A, Donahue EH, Wren BW (2012) Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One 7:e50527. doi:10.1371/journal.pone.0050527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Merrigan MM, Venugopal A, Roxas JL, Anwar F, Mallozzi MJ, Roxas BAP, Gerding DN, Viswanathan VK, Vedantam G (2013) Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS One 8:e78404. doi:10.1371/journal.pone.0078404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Razaq N, Sambol S, Nagaro K, Zukowski W, Cheknis A, Johnson S, Gerding DN (2007) Infection of hamsters with historical and epidemic BI types of Clostridium difficile. J Infect Dis 196:1813–9. doi:10.1086/523106

    Article  PubMed  Google Scholar 

  42. Sambol SP, Merrigan MM, Lyerly D, Gerding DN, Johnson S (2000) Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease. Infect Immun 68:5480–7. doi:10.1128/iai.68.10.5480-5487.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, Kuijper EJ, Wilcox MH (2010) The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 23:529–49. doi:10.1128/CMR.00082-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moura I, Spigaglia P, Barbanti F, Mastrantonio P (2013) Analysis of metronidazole susceptibility in different Clostridium difficile PCR ribotypes. J Antimicrob Chemother 68:362–5. doi:10.1093/jac/dks420

    Article  CAS  PubMed  Google Scholar 

  45. National Health Laboratory Service (2013) Western Cape academic hospitals antimicrobial recommendations [Internet]. doi: http://www.fidssa.co.za/Content/Documents/Antibiotic_Rec_2013_final.pdf

  46. WHO (2015) Tuberculosis country profiles [Internet]. WHO. doi: http://www.who.int/tb/country/data/profiles/en/. Accessed 02 July 2016

  47. Wang P, Zhou Y, Wang Z, Xie S, Zhang T, Lin M, Li R, Tan J, Chen Y, Jiang B (2014) Identification of Clostridium difficile ribotype 027 for the first time in Mainland China. Infect Control Hosp Epidemiol 35:95–8. doi:10.1086/674405

    Article  CAS  PubMed  Google Scholar 

  48. Choi YJ, Kim HG, Choi YA, Joo WC, Son DW, Kim CH, Shin YW, Kim YS (2009) A case of pseudomembranous colitis associated with rifampicin therapy in a patient with rectal cancer and gastrointestinal tuberculosis. Korean J Gastroenterol Taehan Sohwagi Hakhoe Chi 53:53–6

    PubMed  Google Scholar 

  49. Jung S-W, Jeon S-W, Do B-H, Kim S-G, Ha S-S, Cho C-M, Tak W-Y, Kweon Y-O, Kim S-K, Choi Y-H, Cha S-I (2007) Clinical aspects of rifampicin-associated pseudomembranous colitis. J Clin Gastroenterol 41:38–40. doi:10.1097/MCG.0b013e31802dfaf7

    Article  CAS  PubMed  Google Scholar 

  50. Tae CH, Jung S-A, Song HJ, Kim S-E, Choi HJ, Lee M, Hwang Y, Kim H, Lee K (2009) The first case of antibiotic-associated colitis by Clostridium difficile PCR ribotype 027 in Korea. J Korean Med Sci 24:520–4. doi:10.3346/jkms.2009.24.3.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun Y-X, Zhao Y-T, Teng L-L, Ge J-L, Jiang H, Shao L (2013) Clostridium difficile infection associated with antituberculous agents in a patient with tuberculous pericarditis. Int Med Tokyo Jpn 52:1495–7. doi:10.2169/internalmedicine.52.0162

    Article  Google Scholar 

  52. Obuch-Woszczatyński P, Dubiel G, Harmanus C, Kuijper E, Duda U, Wultańska D, van Belkum A, Pituch H (2013) Emergence of Clostridium difficile infection in tuberculosis patients due to a highly rifampicin-resistant PCR ribotype 046 clone in Poland. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 32:1027–30. doi:10.1007/s10096-013-1845-5

    Article  Google Scholar 

  53. Chang KC, Leung CC, Yew WW, Lam FM, Ho PL, Chau CH, Cheng VCC, Yuen KY (2009) Analyses of fluoroquinolones and Clostridium difficile-associated diarrhoea in tuberculosis patients. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis 13:341–6

    CAS  Google Scholar 

  54. Lee YM, Huh KC, Yoon SM, Jang BI, Shin JE, Koo HS, Jung Y, Kim SH, Moon HS, Lee SW, Daejeon-Chungchung Intestinal Research Group (2015) Incidence and clinical outcomes of Clostridium difficile infection after treatment with tuberculosis medication. Gut Liver 10(2):250–254. doi:10.5009/gnl14435

  55. Lawley TD, Clare S, Walker AW, Goulding D, Stabler RA, Croucher N, Mastroeni P, Scott P, Raisen C, Mottram L, Fairweather NF, Wren BW, Parkhill J, Dougan G (2009) Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 77:3661–9. doi:10.1128/IAI.00558-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bordeleau E, Purcell EB, Lafontaine DA, Fortier L-C, Tamayo R, Burrus V (2015) Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol 197:819–32. doi:10.1128/JB.02340-14

    Article  PubMed  Google Scholar 

  57. Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195:545–55. doi:10.1128/JB.01980-12

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Yolandi Roodt and Lesley Jafta for technical assistance with the capillary gel electrophoresis experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Abratt.

Ethics declarations

Funding

This study was funded by the National Research Foundation of South Africa and the South African Medical Research Council. B. Kullin acknowledges the Claude Leon Foundation and the Carnegie Corporation of New York for Postdoctoral Fellowships and an assistance grant from the European Society of Clinical Microbiology and Infectious Diseases to attend the ANAEROBE 2014 Congress. T. Brock was supported by the Equity Development Programme, UCT.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and Informed consent

The study was approved by the Ethics Committee of the University of Cape Town (HREC number: 310/2008) and included the obtaining of informed consent of patients.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Minimum spanning tree representation of MLVA data for C. difficile isolates. Unique MLVA types are represented by individual circles, coloured according to ribotype with the size of the circle representing the number of isolates per MLVA type. Circle labels indicate isolation date with the patient ward in brackets. Numbers between the circles represent the summed tandem repeats (STRDs) between isolates. Isolates with a STRD ≤ 2 are shaded and ribotype 017 strains are enclosed by a dotted line. The tree has been redrawn for ease of viewing and is not to scale (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kullin, B., Brock, T., Rajabally, N. et al. Characterisation of Clostridium difficile strains isolated from Groote Schuur Hospital, Cape Town, South Africa. Eur J Clin Microbiol Infect Dis 35, 1709–1718 (2016). https://doi.org/10.1007/s10096-016-2717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2717-6

Keywords

Navigation