Skip to main content

Advertisement

Log in

A population-based study of aerococcal bacteraemia in the MALDI-TOF MS-era

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the incidence of aerococcal bacteraemia in the MALDI-TOF MS-era, to describe the clinical presentation and to determine the MIC values of aerococci for ten antibiotics. Aerococci in blood cultures were identified through searches in the laboratory database for the years 2012–2014. MALDI-TOF MS, sequencing of the 16S rRNA gene and a PYR test were used for species identification. Patients’ medical charts were systematically reviewed. Etests were used to determine MIC values. Seventy-seven patients were identified (Aerococcus urinae n = 49, Aerococcus viridans n = 14, Aerococcus sanguinicola n = 13 and Aerococcus christensenii n = 1) corresponding to incidences of 14 cases per 1,000,000 inhabitants per year (A. urinae) and 3.5 cases per 1,000,000 inhabitants per year (A. sanguinicola and A.viridans). A. urinae was in pure culture in 61 %, A. sanguinicola in 46 % and A. viridans in 36 % of the cases. The A. urinae and A. sanguinicola patients were old and many had urinary tract disorders, and a majority had a suspected urinary tract focus of the bacteraemia. Eighty percent of the A. urinae patients were men. Five A. urinae patients were diagnosed with infective endocarditis. Six patients died within 30 days. Most isolates had low MICs to penicillins and carbapenems. MALDI-TOF MS has led to an increased identification of aerococcal bacteremia. A. urinae remains the most common Aerococcus in blood cultures and in aerococcal IE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasmussen M (2013) Aerococci and aerococcal infections. J Infect 66(6):467–474. doi:10.1016/j.jinf.2012.12.006

    Article  PubMed  Google Scholar 

  2. Rasmussen M (2015) Aerococcus: an increasingly acknowledged human pathogen. Clin Microbiol Infect 22(1):22–27. doi:10.1016/j.cmi.2015.09.026

  3. Humphries RM, Hindler JA (2014) In vitro antimicrobial susceptibility of Aerococcus urinae. J Clin Microbiol 52(6):2177–2180. doi:10.1128/JCM.00418-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yasukawa K, Afzal Z, Mbang P, Stager CE, Musher DM (2014) Aerococcal infection at three US Tertiary Care Hospitals. South Med J 107(10):642–647. doi:10.14423/SMJ.0000000000000158

    Article  PubMed  Google Scholar 

  5. Opota O, Prod'hom G, Andreutti-Zaugg C, Dessauges M, Merz L, Greub G et al (2015) Diagnosis of Aerococcus urinae infections: importance of MALDI-TOF MS and broad-range 16S rDNA PCR. Clin Microbiol Infect 22(1):e1–2. doi:10.1016/j.cmi.2015.08.026

  6. Christensen JJ, Korner B, Kjaergaard H (1989) Aerococcus-like organism—an unnoticed urinary tract pathogen. APMIS 97(6):539–546

    Article  CAS  PubMed  Google Scholar 

  7. Christensen JJ, Jensen IP, Faerk J, Kristensen B, Skov R, Korner B (1995) Bacteremia/septicemia due to Aerococcus-like organisms: report of seventeen cases. Danish ALO Study Group. Clin Infect Dis 21(4):943–947

    Article  CAS  PubMed  Google Scholar 

  8. Senneby E, Petersson AC, Rasmussen M (2012) Clinical and microbiological features of bacteraemia with Aerococcus urinae. Clin Microbiol Infect 18(6):546–550. doi:10.1111/j.1469-0691.2011.03609.x

    Article  CAS  PubMed  Google Scholar 

  9. Senneby E, Eriksson B, Fagerholm E, Rasmussen M (2014) Bacteremia with Aerococcus sanguinicola: case series with characterization of virulence properties. Open Forum Infect Dis 1(1):ofu025. doi:10.1093/ofid/ofu025

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sunnerhagen T, Nilson B, Olaison L, Rasmussen M (2015) Clinical and microbiological features of infective endocarditis caused by aerococci. Infection. doi:10.1007/s15010-015-0812-8

    PubMed  Google Scholar 

  11. Cattoir V, Kobal A, Legrand P (2010) Aerococcus urinae and Aerococcus sanguinicola, two frequently misidentified uropathogens. Scand J Infect Dis 42(10):775–780. doi:10.3109/00365548.2010.485576

    Article  CAS  PubMed  Google Scholar 

  12. Christensen JJ, Dargis R, Hammer M, Justesen US, Nielsen XC, Kemp M et al (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of Gram-positive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension. J Clin Microbiol 50(5):1787–1791. doi:10.1128/JCM.06339-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Senneby E, Nilson B, Petersson AC, Rasmussen M (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry is a sensitive and specific method for identification of aerococci. J Clin Microbiol 51(4):1303–1304. doi:10.1128/JCM.02637-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Senneby E, Petersson AC, Rasmussen M (2015) Epidemiology and antibiotic susceptibility of aerococci in urinary cultures. Diagn Microbiol Infect Dis 81(2):149–151. doi:10.1016/j.diagmicrobio.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  15. de Jong MF, Soetekouw R, ten Kate RW, Veenendaal D (2010) Aerococcus urinae: severe and fatal bloodstream infections and endocarditis. J Clin Microbiol 48(9):3445–3447. doi:10.1128/JCM.00835-10

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rasmussen M (2014) Letter to the editor. Can J Infect Dis Med Microbiol 25(4):232

    PubMed  PubMed Central  Google Scholar 

  17. Ebnother C, Altwegg M, Gottschalk J, Seebach JD, Kronenberg A (2002) Aerococcus urinae endocarditis: case report and review of the literature. Infection 30(5):310–313. doi:10.1007/s15010-002-3106-x

    Article  CAS  PubMed  Google Scholar 

  18. Skov R, Christensen JJ, Korner B, Frimodt-Moller N, Espersen F (2001) In vitro antimicrobial susceptibility of Aerococcus urinae to 14 antibiotics, and time-kill curves for penicillin, gentamicin and vancomycin. J Antimicrob Chemother 48(5):653–658

    Article  CAS  PubMed  Google Scholar 

  19. Lupo A, Guilarte YN, Droz S, Hirzel C, Furrer H, Endimiani A (2014) In vitro activity of clinically implemented beta-lactams against Aerococcus urinae: presence of non-susceptible isolates in Switzerland. New Microbiol 37(4):563–566

    CAS  PubMed  Google Scholar 

  20. Facklam R, Lovgren M, Shewmaker PL, Tyrrell G (2003) Phenotypic description and antimicrobial susceptibilities of Aerococcus sanguinicola isolates from human clinical samples. J Clin Microbiol 41(6):2587–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cattoir V, Kobal A, Legrand P (2011) First molecular characterization of fluoroquinolone resistance in Aerococcus spp. Antimicrob Agents Chemother 55(1):451–452. doi:10.1128/AAC.01065-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bizzini A, Durussel C, Bille J, Greub G, Prod'hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48(5):1549–1554. doi:10.1128/JCM.01794-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kahn F, Linder A, Petersson AC, Christensson B, Rasmussen M (2010) Axillary abscess complicated by venous thrombosis: identification of Streptococcus pyogenes by 16S PCR. J Clin Microbiol 48(9):3435–3437. doi:10.1128/JCM.00373-10

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jalava J, Kotilainen P, Nikkari S, Skurnik M, Vanttinen E, Lehtonen OP et al (1995) Use of the polymerase chain reaction and DNA sequencing for detection of Bartonella quintana in the aortic valve of a patient with culture-negative infective endocarditis. Clin Infect Dis 21(4):891–896

    Article  CAS  PubMed  Google Scholar 

  25. Fredricks DN, Relman DA (1998) Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J Clin Microbiol 36(10):2810–2816

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vela AI, Garcia N, Latre MV, Casamayor A, Sanchez-Porro C, Briones V et al (2007) Aerococcus suis sp. nov., isolated from clinical specimens from swine. Int J Syst Evol Microbiol 57(Pt 6):1291–1294. doi:10.1099/ijs.0.64537-0

    Article  CAS  PubMed  Google Scholar 

  27. Durack DT, Lukes AS, Bright DK (1994) New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Duke Endocarditis Service. Am J Med 96(3):200–209

    Article  CAS  PubMed  Google Scholar 

  28. Ibler K, Truberg Jensen K, Ostergaard C, Sonksen UW, Bruun B, Schonheyder HC et al (2008) Six cases of Aerococcus sanguinicola infection: clinical relevance and bacterial identification. Scand J Infect Dis 40(9):761–765. doi:10.1080/00365540802078059

    Article  CAS  PubMed  Google Scholar 

  29. Rasmussen M (2012) Aerococcus viridans is not a matter of opinion. Comment on: An unusual microorganism, Aerococcus viridans, causing endocarditis and aortic valvular obstruction due to a huge vegetation (Turk Kardiyol Dern Ars 2011;39:317–319). Turk Kardiyol Dern Ars 40(1):112

    PubMed  Google Scholar 

  30. Williams RE, Hirch A, Cowan ST (1953) Aerococcus, a new bacterial genus. J Gen Microbiol 8(3):475–480. doi:10.1099/00221287-8-3-475

    Article  CAS  PubMed  Google Scholar 

  31. Collins MD, Jovita MR, Hutson RA, Ohlen M, Falsen E (1999) Aerococcus christensenii sp. nov., from the human vagina. Int J Syst Bacteriol 49(Pt 3):1125–1128. doi:10.1099/00207713-49-3-1125

    Article  PubMed  Google Scholar 

  32. Carlstein CSL, Christensen J (2015) Aerococcus christensenii as part of severe polymicrobial chorioamnionitis in a pregnant woman. Open Microbiol J 9:1–4

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Maria Liljeheden, Bo Nilson and Ann-Cathrine Petersson for important help. This work was supported by the Swedish Government Fund for Clinical Research (ALF), the Royal Physiographic Society in Lund, and the foundations of Marianne and Marcus Wallenberg, Crafoord and Österlund. Parts of this study were presented as an abstract at the annual meeting for clinical microbiologist in Östersund, Sweden, May 2015. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Senneby.

Ethics declarations

Funding

This work was supported by the Swedish Government Fund for Clinical Research (ALF), the Royal Physiographic Society in Lund, and the foundations of Marianne and Marcus Wallenberg, Crafoord and Österlund.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The local research ethical committee in Lund, Sweden, approved this study (registration number 2013/31).

Informed consent

Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senneby, E., Göransson, L., Weiber, S. et al. A population-based study of aerococcal bacteraemia in the MALDI-TOF MS-era. Eur J Clin Microbiol Infect Dis 35, 755–762 (2016). https://doi.org/10.1007/s10096-016-2594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2594-z

Keywords

Navigation