Skip to main content

Advertisement

Log in

The emergence of Clostridium difficile PCR-ribotype 001 in Slovakia

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine the incidence of Clostridium difficile infections (CDI) and to characterise the isolates in 14 departments of ten academic hospitals in Slovakia.

Methods

During a one-month study (September 2012) all unformed stool samples were investigated using a rapid test to detect the presence of GDH and toxins A/B. Positive samples were cultured anaerobically and C. difficile isolates were characterised by ribotyping, multiple-locus variable-number tandem repeats analysis, and gyrA, rpoB and ermB investigation.

Results

A total of 194 unformed stool samples were investigated and 38 (19.6 %) had a positive rapid test. Of 38 samples, 27 revealed a positive result for GDH and free toxins A/B in the stool, and 11 samples only for the presence of GDH. The mean CDI incidence in 2012 was 5.2 cases per 10,000 patient bed-days. Twenty C. difficile isolates were available for molecular analysis; seventeen belonged to PCR-ribotype 001 (85 %) whereas the remaining three isolates were identified as PCR-ribotypes 017, 078 and 449. MLVA of the PCR-ribotype 001 isolates identified two clonal complexes and a close genetic relatedness between isolates from six different hospitals. Molecular analysis of antibiotic-resistance determinants revealed the presence of ermB gene encoding resistance to the MLSB group of antibiotics in 90 % of isolates, and Thr82Ile amino acid substitution in the gyrA gene associated with resistance to fluoroquinolones in 85 % of isolates.

Conclusions

We conclude that C. difficile PCR-ribotype 001 is the predominant PCR-ribotype in Slovakia with a strong potential for clonal spread and development of multidrug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, Kuijper EJ, Wilcox MH (2010) The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 23(3):529–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bauer MP1, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ, ECDIS Study Group (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377(9759):63–73. doi:10.1016/S0140-6736(10)61266-4

    Article  PubMed  Google Scholar 

  3. Davies KA, Longshaw CM, Davis GL, Bouza E, Barbut F, Barna Z, Delmée M, Fitzpatrick F, Ivanova K, Kuijper E, Macovei IS, Mentula S, Mastrantonio P, von Müller L, Oleastro M, Petinaki E, Pituch H, Norén T, Nováková E, Nyč O, Rupnik M, Schmid D, Wilcox MH (2014) Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis 4(12):1208–19. doi:10.1016/S1473-3099(14)70991-0

    Article  Google Scholar 

  4. Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C et al (2015) Pan-European Longitudinal Surveillance of antibiotic resistance among prevalent Clostridium difficile Ribotypes’ study group. Clin Microbiol Infect 21(3):248, e9-248.e16

    Article  PubMed  Google Scholar 

  5. Kuijper EJ, Coignard B, Tüll P, ESCMID Study Group for Clostridium difficile; EU Member States; European Centre for Disease Prevention and Control (2006) Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12(6):2–18, Review

    Article  CAS  PubMed  Google Scholar 

  6. McDonald LC, Coignard B, Dubberke E, Song X, Horan T, Kutty PK; Ad Hoc Clostridium Difficile Surveillance Working Group (2007) Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol 28(2):140–5

    Article  Google Scholar 

  7. Bauer MP, Kuijper EJ, van Dissel JT, European Society of Clinical Microbiology and Infectious Diseases (2009) European society of clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect 15(12):1067–79. doi:10.1111/j.1469-0691.2009.03099.x

    Article  CAS  PubMed  Google Scholar 

  8. Debast SB, Bauer MP, Kuijper EJ, European Society of Clinical Microbiology and Infectious Diseases (2014) European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 20(2):1–26. doi:10.1111/1469-0691.12418

    Article  CAS  PubMed  Google Scholar 

  9. Stubbs SL, Brazier JS, O'Neill GL, Duerden BI (1999) PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37(2):461–3

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, Wewalka G, Allerberger F, Kuijper EJ (2008) Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol 57:1377–82. doi:10.1099/jmm.0.47714-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Van den Berg RJ, Schaap I, Templeton KE, Klaassen CH, Kuijper EJ (2007) Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol 45(3):1024–8

    Article  PubMed Central  PubMed  Google Scholar 

  12. Goorhuis A, Legaria MC, van den Berg RJ, Harmanus C, Klaassen CH, Brazier JS, Lumelsky G, Kuijper EJ (2009) Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires, Argentina. Clin Microbiol Infect 15(12):1080–6. doi:10.1111/j.1469-0691.2009.02759.x

    Article  CAS  PubMed  Google Scholar 

  13. Spigaglia P, Mastrantonio P (2004) Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J Med Microbiol 53(11):1129–36

    Article  CAS  PubMed  Google Scholar 

  14. Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit JC (2002) gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother 46(11):3418–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Curry SR, Marsh JW, Shutt KA, Muto CA, O'Leary MM, Saul MI, Pasculle AW, Harrison LH (2009) High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis 48(4):425–9. doi:10.1086/596315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zaiß NH, Witte W, Nübel U (2010) Fluoroquinolone resistance and Clostridium difficile, Germany. Emerg Infect Dis 16(4):675–677. doi:10.3201/eid1604.090859

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wiuff C, Brown DJ, Mather H, Banks AL, Eastaway A, Coia JE (2011) The epidemiology of Clostridium difficile in Scotland. J Infect 62(4):271–9. doi:10.1016/j.jinf.2011.01.015

    Article  PubMed  Google Scholar 

  18. Novak A, Spigaglia P, Barbanti F, Goic-Barisic I, Tonkic M (2014) First clinical and microbiological characterization of Clostridium difficile infection in a Croatian University Hospital. Anaerobe 30:18–23. doi:10.1016/j.anaerobe.2014.07.007

    Article  PubMed  Google Scholar 

  19. Vanek J, Hill K, Collins J, Berrington A, Perry J, Inns T, Gorton R, Magee J, Sails A, Mullan A, Gould FK (2012) Epidemiological survey of Clostridium difficile ribotypes in the North East of England during an 18-month period. J Hosp Infect 81(3):209–12. doi:10.1016/j.jhin.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  20. Alcalá L, Martín A, Marín M, Sánchez-Somolinos M, Catalán P, Peláez T, Bouza E, Spanish Clostridium Difficile Study Group (2012) The undiagnosed cases of Clostridium difficile infection in a whole nation: where is the problem? Clin Microbiol Infect 18(7):E204–13. doi:10.1111/j.1469-0691.2012.03883.x

    Article  PubMed  Google Scholar 

  21. Krutova M, Matejkova J, Nyc O (2013) First results of molecular typing of Clostridium difficile in the Czech Republic. Zprávy CEM (SZÚ, Praha) 22(12):399–401

    Google Scholar 

  22. Arvand M, Vollandt D, Bettge-Weller G, Harmanus C, Kuijper EJ, Clostridium difficile study group Hesse (2014) Increased incidence of Clostridium difficile PCR ribotype 027 in Hesse, vol 19. Euro Surveill, Germany, 2011 to 2013

    Google Scholar 

  23. Arvand M, Hauri AM, Zaiss NH, Witte W, Bettge-Weller G (2009) Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, vol 14. Euro Surveill, Germany, 45

    Google Scholar 

  24. Goorhuis A, Bakker D, Cover J, Debast SB, Harmanus C, Notermans DW, Bergwerff AA, Dekker FW, Kuijper EJ (2008) Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–70

    Article  CAS  PubMed  Google Scholar 

  25. Bakker D, Corver J, Harmanus C, Goorhuis A, Keessen EC, Fawley WN, Wilcox MH, Kuijper EJ (2010) Relatedness of human and animal Clostridium difficile PCR ribotype 078 isolates determined on the basis of multilocus variable number tandem-repeat analysis and tetracycline resistance. J Clin Microbiol 48:3744–3749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Knetsch C, Connor T, Mutreja A, van Dorp S, Sanders I, Browne H, Harris D, Lipman L, Keessen E, Corver J, Kuijper E, Lawley T (2014) Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill 19(45):20954

    CAS  PubMed  Google Scholar 

  27. Peláez T, Alcalá L, Blanco JL, Álvarez-Pérez S, Marín M, Martín-López A, Catalán P, Reigadas E, García ME, Bouza E (2013) Characterization of swine isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug resistant strains? Anaerobe 22:45–9. doi:10.1016/j.anaerobe.2013.05.009

    Article  PubMed  Google Scholar 

  28. Spigaglia P, Drigo I, Barbanti F, Mastrantonio P, Bano L, Bacchin C, Puiatti C, Tonon E, Berto G, Agnoletti F (2015) Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 31:42–6. doi:10.1016/j.anaerobe.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  29. Janezic S, Zidaric V, Pardon B, Indra A, Kokotovic B, Blanco JL, Seyboldt C, Diaz CR, Poxton IR, Perreten V, Drigo I, Jiraskova A, Ocepek M, Weese JS, Songer JG, Wilcox MH, Rupnik M (2014) International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol 14:173. doi:10.1186/1471-2180-14-173

    Article  PubMed Central  PubMed  Google Scholar 

  30. Schneeberg A, Neubauer H, Schmoock G, Baier S, Harlizius J, Nienhoff H, Brase K, Zimmermann S, Seyboldt C (2013) Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol 51(11):3796–803. doi:10.1128/JCM.01440-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Taori SK, Wroe A, Hardie A, Gibb AP, Poxton IR (2014) A prospective study of community-associated Clostridium difficile infections: the role of antibiotics and co-infections. J Infect 69(2):134–44. doi:10.1016/j.jinf.2014.04.002

    Article  PubMed  Google Scholar 

  32. Sharp SE, Ruden LO, Pohl JC, Hatcher PA, Jayne LM, Ivie WM (2010) Evaluation of the C.Diff Quik Chek Complete Assay, a new glutamate dehydrogenase and A/B toxin combination lateral flow assay for use in rapid, simple diagnosis of Clostridium difficile disease. J Clin Microbiol 48(6):2082–6. doi:10.1128/JCM.00129-10

    Article  PubMed Central  PubMed  Google Scholar 

  33. Eastwood K, Else P, Charlett A, Wilcox M (2009) Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol 47(10):3211–7. doi:10.1128/JCM.01082-09

    Article  PubMed Central  PubMed  Google Scholar 

  34. Planche TD, Davies KA, Coen PG, Finney JM, Monahan IM, Morris KA, O'Connor L, Oakley SJ, Pope CF, Wren MW, Shetty NP, Crook DW, Wilcox MH (2013) Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C. difficile infection. Lancet Infect Dis 13(11):936–45. doi:10.1016/S1473-3099(13)70200-7

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wilcox MH (2012) Overcoming barriers to effective recognition and diagnosis of Clostridium difficile infection. Clin Microbiol Infect 18(Suppl 6):13–20. doi:10.1111/1469-0691.12057

    Article  PubMed  Google Scholar 

  36. Spigaglia P, Barbanti F, Mastrantonio P, European Study Group on Clostridium difficile (ESGCD) (2011) Multidrug resistance in European Clostridium difficile clinical isolates. Antimicrob Chemother 66(10):2227–34. doi:10.1093/jac/dkr292

    Article  CAS  Google Scholar 

  37. Solomon K, Fanning S, McDermott S, Murray S, Scott L, Martin A, Skally M, Burns K, Kuijper E, Fitzpatrick F, Fenelon L, Kyne L (2011) PCR ribotype prevalence and molecular basis of macrolide-lincosamide-streptogramin B (MLSB) and fluoroquinolone resistance in Irish clinical Clostridium difficile isolates. J Antimicrob Chemother 66(9):1976–82. doi:10.1093/jac/dkr275

    Article  CAS  PubMed  Google Scholar 

  38. van den Berg RJ, Claas EC, Oyib DH, Klaassen CH, Dijkshoorn L, Brazier JS, Kuijper EJ (2004) Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 42(3):1035–41

    Article  PubMed Central  PubMed  Google Scholar 

  39. Pituch H, Brazier JS, Obuch-Woszczatynski P, Wultanska D, Meisel-Mikolajczyk F, Luczak M (2006) Prevalence and association of PCR ribotypes of Clostridium difficile isolated from symptomatic patients from Warsaw with macrolide-lincosamide-streptogramin B (MLSB) type resistance. J Med Microbiol 55(Pt 2):207–13

    Article  CAS  PubMed  Google Scholar 

  40. Ackermann G, Degner A, Cohen SH, Silva J Jr, Rodloff AC (2003) Prevalence and association of macrolide-lincosamide-streptogramin B (MLS(B)) resistance with resistance to moxifloxacin in Clostridium difficile. J Antimicrob Chemother 51(3):599–603

    Article  CAS  PubMed  Google Scholar 

  41. Spigaglia P, Barbanti F, Mastrantonio P, Brazier JS, Barbut F, Delmée M, Kuijper E, Poxton IR, European Study Group on Clostridium difficile (ESGCD) (2008) Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. J Med Microbiol 57(Pt 6):784–9. doi:10.1099/jmm.0.47738-0

    Article  CAS  PubMed  Google Scholar 

  42. Drudy D, Kyne L, O'Mahony R, Fanning S (2007) gyrA mutations in fluoroquinolone-resistant Clostridium difficile PCR-027. Emerg Infect Dis 13(3):504–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. O'Connor JR, Galang MA, Sambol SP, Hecht DW, Vedantam G, Gerding DN, Johnson S (2008) Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother 52(8):2813–7. doi:10.1128/AAC.00342-08

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank ECDIS-net and the European Study Group of Clostridium difficile infections (ESGCD, ESCMID) for their professional support.

We would like to thank Dr. James Partridge for proofreading the text.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

For this type of study formal consent was not required.

Funding

Supported by the Ministry of Health, Czech Republic Internal Grant Agency NT/14209-3 and MH CZ – DRO, University Hospital Motol, Prague, Czech Republic 00064203.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krutova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 23 kb)

Table S2

(DOCX 21 kb)

Table S3

(DOCX 19 kb)

Table S4

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyc, O., Krutova, M., Liskova, A. et al. The emergence of Clostridium difficile PCR-ribotype 001 in Slovakia. Eur J Clin Microbiol Infect Dis 34, 1701–1708 (2015). https://doi.org/10.1007/s10096-015-2407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2407-9

Keywords

Navigation