Skip to main content
Log in

Penicillin susceptibility breakpoints for Streptococcus pneumoniae and their effect on susceptibility categorisation in Germany (1997–2013)

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Continuous nationwide surveillance of invasive pneumococcal disease (IPD) was conducted in Germany. From July 1, 1997, to June 30, 2013, data on penicillin susceptibility were available for 20,437 isolates. 2,790 of these isolates (13.7 %) originate from patients with meningitis and 17,647 isolates (86.3 %) are from non-meningitis cases. A slight decline in isolates susceptible at 0.06 and 0.12 μg/ml can be noticed over the years. Overall, 89.1 % of the isolates had minimum inhibitory concentrations (MICs) of ≤0.015 μg/ml. In 2012/2013, the first three isolates of Streptococcus pneumoniae with MICs of 8 μg/ml were found. The application of different guidelines with other MIC breakpoints for the interpretation of penicillin resistance leads to differences in susceptibility categorisation. According to the pre-2008 Clinical and Laboratory Standards Institute (CLSI) interpretive criteria, 5.3 % of isolates overall were intermediate and 1.4 % were resistant to penicillin. Application of the 2008–2014 CLSI interpretive criteria resulted in 7.6 % resistance among meningitis cases and 0.5 % intermediate resistance in non-meningitis cases. Referring to the 2009–2014 European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, 7.6 % of the isolates in the meningitis group were resistant to penicillin. In the non-meningitis group, 6.1 % of the isolates were intermediate and 0.5 % were resistant. These differences should be kept in mind when surveillance studies on pneumococcal penicillin resistance are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Austrian R (1981) Pneumococcus: the first one hundred years. Rev Infect Dis 3(2):183–189

    Article  PubMed  CAS  Google Scholar 

  2. Clinical Laboratory Standards Institute (CLSI) (2006) Performance standards for antimicrobial susceptibility testing; 16th informational supplement. CLSI document M100-S16. CLSI, Wayne, PA

  3. Clinical Laboratory Standards Institute (CLSI) (2008) Performance standards for antimicrobial susceptibility testing; 18th informational supplement. CLSI document M100-S18. CLSI, Wayne, PA

  4. Clinical Laboratory Standards Institute (CLSI) (2014) Performance standards for antimicrobial susceptibility testing; 24th informational supplement. CLSI document M100-S24. CLSI, Wayne, PA

  5. Centers for Disease Control and Prevention (CDC) (2008) Effects of new penicillin susceptibility breakpoints for Streptococcus pneumoniae—United States, 2006–2007. MMWR Morb Mortal Wkly Rep 57(50):1353–1355

    Google Scholar 

  6. Weinstein MP, Klugman KP, Jones RN (2009) Rationale for revised penicillin susceptibility breakpoints versus Streptococcus pneumoniae: coping with antimicrobial susceptibility in an era of resistance. Clin Infect Dis 48(11):1596–1600

    Article  PubMed  CAS  Google Scholar 

  7. European Committee for Antimicrobial Susceptibility Testing (EUCAST) (2009) Breakpoint tables for interpretation of MICs and zone diameters, version 1.0, December 2009. European Society of Clinical Microbiology and Infectious Diseases (ESCMID). http://www.eucast.org

  8. European Committee for Antimicrobial Susceptibility Testing (EUCAST) (2014) Breakpoint tables for interpretation of MICs and zone diameters, version 4.0, January 2014. European Society of Clinical Microbiology and Infectious Diseases (ESCMID). http://www.eucast.org

  9. Imöhl M, Reinert RR, van der Linden M (2009) New penicillin susceptibility breakpoints for streptococcus pneumoniae and their effects on susceptibility categorisation in Germany (1992–2008). Int J Antimicrob Agents 34(3):271–273

    Article  PubMed  Google Scholar 

  10. Jacobs MR, Good CE, Beall B, Bajaksouzian S, Windau AR, Whitney CG (2008) Changes in serotypes and antimicrobial susceptibility of invasive Streptococcus pneumoniae strains in Cleveland: a quarter century of experience. J Clin Microbiol 46(3):982–990

    Article  PubMed  PubMed Central  Google Scholar 

  11. Livermore DM (2003) Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis 36(Suppl 1):S11–S23

    Article  PubMed  CAS  Google Scholar 

  12. Reinert RR (2004) Pneumococcal conjugate vaccines—a European perspective. Int J Med Microbiol 294(5):277–294

    Article  PubMed  CAS  Google Scholar 

  13. Pérez-Trallero E, Martín-Herrero JE, Mazón A, García-Delafuente C, Robles P, Iriarte V, Dal-Ré R, García-de-Lomas J; Spanish Surveillance Group for Respiratory Pathogens (2010) Antimicrobial resistance among respiratory pathogens in Spain: latest data and changes over 11 years (1996–1997 to 2006–2007). Antimicrob Agents Chemother 54(7):2953–2959

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fenoll A, Granizo JJ, Aguilar L, Giménez MJ, Aragoneses-Fenoll L, Hanquet G, Casal J, Tarragó D (2009) Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007. J Clin Microbiol 47(4):1012–1020

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Su LH, Wu TL, Kuo AJ, Chia JH, Chiu CH (2009) Antimicrobial susceptibility of Streptococcus pneumoniae at a university hospital in Taiwan, 2000–07: impact of modified non-meningeal penicillin breakpoints in CLSI M100-S18. J Antimicrob Chemother 64(2):336–342

    Article  PubMed  CAS  Google Scholar 

  16. Oteo J, Lázaro E, de Abajo FJ, Baquero F, Campos J; Spanish Members of the European Antimicrobial Resistance Surveillance System (2004) Trends in antimicrobial resistance in 1,968 invasive Streptococcus pneumoniae strains isolated in Spanish hospitals (2001 to 2003): decreasing penicillin resistance in children’s isolates. J Clin Microbiol 42(12):5571–5577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Goossens MC, Catry B, Verhaegen J (2013) Antimicrobial resistance to benzylpenicillin in invasive pneumococcal disease in Belgium, 2003–2010: the effect of altering clinical breakpoints. Epidemiol Infect 141(3):490–495

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Song JH (2013) Advances in pneumococcal antibiotic resistance. Expert Rev Respir Med 7(5):491–498

    Article  PubMed  CAS  Google Scholar 

  19. Doğan O, Gülmez D, Hasçelik G (2010) Effect of new breakpoints proposed by Clinical and Laboratory Standards Institute in 2008 for evaluating penicillin resistance of Streptococcus pneumoniae in a Turkish University Hospital. Microb Drug Resist 16(1):39–41

    Article  PubMed  Google Scholar 

  20. Wolkers PC, Mantese OC, Paula A, Almeida VV, Aguiar PA, Alvares JR, Almeida SC, Brandileone MC (2009) New susceptibility breakpoints in antimicrobial resistance rates of invasive pneumococcal strains. J Pediatr (Rio J) 85(5):421–425

    Google Scholar 

  21. Jacobs MR (2007) Clinical significance of antimicrobial resistance in Streptococcus pneumoniae. S Afr Med J 97(11 Pt 3):1133–1140

    PubMed  CAS  Google Scholar 

  22. Mera RM, Miller LA, Amrine-Madsen H, Sahm DF (2011) Impact of new Clinical Laboratory Standards Institute Streptococcus pneumoniae penicillin susceptibility testing breakpoints on reported resistance changes over time. Microb Drug Resist 17(1):47–52

    Article  PubMed  CAS  Google Scholar 

  23. Imöhl M, Reinert RR, van der Linden M (2010) Serotype-specific penicillin resistance of Streptococcus pneumoniae in Germany from 1992 to 2008. Int J Med Microbiol 300(5):324–330

    Article  PubMed  Google Scholar 

  24. Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, Thomas AR, Harrison LH, Bennett NM, Farley MM, Facklam RR, Jorgensen JH, Besser J, Zell ER, Schuchat A, Whitney CG; Active Bacterial Core Surveillance of the Emerging Infections Program Network (2006) Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med 354(14):1455–1463

    Article  PubMed  CAS  Google Scholar 

  25. Hammitt LL, Bruden DL, Butler JC, Baggett HC, Hurlburt DA, Reasonover A, Hennessy TW (2006) Indirect effect of conjugate vaccine on adult carriage of Streptococcus pneumoniae: an explanation of trends in invasive pneumococcal disease. J Infect Dis 193(11):1487–1494

    Article  PubMed  Google Scholar 

  26. Dagan R, Klugman KP (2008) Impact of conjugate pneumococcal vaccines on antibiotic resistance. Lancet Infect Dis 8(12):785–795

    Article  PubMed  Google Scholar 

  27. Imöhl M, Reinert RR, van der Linden M (2010) Temporal variations among invasive pneumococcal disease serotypes in children and adults in Germany (1992–2008). Int J Microbiol 2010:874189

    Article  PubMed  PubMed Central  Google Scholar 

  28. Feikin DR, Klugman KP (2002) Historical changes in pneumococcal serogroup distribution: implications for the era of pneumococcal conjugate vaccines. Clin Infect Dis 35(5):547–555

    Article  PubMed  Google Scholar 

  29. Imöhl M, Reinert RR, van der Linden M (2010) Regional differences in serotype distribution, pneumococcal vaccine coverage, and antimicrobial resistance of invasive pneumococcal disease among German federal states. Int J Med Microbiol 300(4):237–247

    Article  PubMed  Google Scholar 

  30. Feikin DR, Klugman KP, Facklam RR, Zell ER, Schuchat A, Whitney CG; Active Bacterial Core surveillance/Emerging Infections Program Network (2005) Increased prevalence of pediatric pneumococcal serotypes in elderly adults. Clin Infect Dis 41(4):481–487

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the microbiological laboratories in Germany for their co-operation and for providing the isolates. This study was supported, in part, by Wyeth Pharma GmbH/Pfizer Deutschland GmbH, Germany. We thank Stephanie Perniciaro for the proofreading of the manuscript.

Conflict of interest

Ralf R. Reinert is an employee of Pfizer Vaccines. The university of Paul M. Tulkens has received research grants and speaker’s honoraria from Cempra Pharmaceuticals, Bayer AG, GSK and AstraZeneca. Mark van der Linden has received research grants and speaker’s honoraria from Pfizer, Sanofi Pasteur MSD, MSD and GSK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Imöhl.

Appendix

Appendix

Table 1 CLSI and EUCAST breakpoints for Streptococcus pneumoniae
Table 2 Resistance rates of S. pneumoniae isolates among meningitis and non-meningitis cases according to the CLSI 2008–2014 (parenterally administered antibiotics) and EUCAST 2009–2014 interpretive criteria per epidemiological year, in percent

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imöhl, M., Reinert, R.R., Tulkens, P.M. et al. Penicillin susceptibility breakpoints for Streptococcus pneumoniae and their effect on susceptibility categorisation in Germany (1997–2013). Eur J Clin Microbiol Infect Dis 33, 2035–2040 (2014). https://doi.org/10.1007/s10096-014-2174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2174-z

Keywords

Navigation