Skip to main content
Log in

Weight calculation and convergence analysis of polyharmonic spline (PHS) with polynomials for different stencils

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

Recent developments in the field of the radial basis function-finite difference (RBF-FD) framework have been focused on conditionally positive definite polyharmonic splines (PHS). Within this context, our research focuses on deriving analytical weights for the RBF-FD+polynomials method within the framework of PHS. We provide convergence analyses for various stencils. To validate the accuracy of our derived formulations, we conduct a series of computational experiments across a range of test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data was used in this study.

References

  1. Babayar-Razlighi, B.: Numerical solution of an influenza model with vaccination and antiviral treatment by the Newton–Chebyshev polynomial method. J. Math. Model. 11, 103–116 (2023)

    MathSciNet  Google Scholar 

  2. Baltensperger, R., Berrut, J.-P.: The errors in calculating the pseudospectral differentiation matrices for Cebysev–Gauss–Lobatto points. Comput. Math. Appl. 37, 41–48 (1999)

    Article  MathSciNet  Google Scholar 

  3. Baltensperger, R.: Improving the accuracy of the matrix differentiation method for arbitrary collocation points. Appl. Numer. Math. 33, 143–149 (2000)

    Article  MathSciNet  Google Scholar 

  4. Barnett, G.A.: A robust RBF-FD formulation based on polyharmonic splines and polynomials, Ph.D. Thesis, University of Colorado (2015)

  5. Bayona, V., Moscoso, M., Kindelan, M.: Optimal variable shape parameter for multiquadric based RBF-FD method. J. Comput. Phys. 231, 2466–2481 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bayona, V., Flyer, N., Fornberg, B., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bayona, V.: An insight into RBF-FD approximations augmented with polynomials. Comput. Math. Appl. 77, 2337–2353 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bayona, V., Flyer, N., Fornberg, B.: On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries. J. Comput. Phys. 380, 378–399 (2019)

    Article  MathSciNet  Google Scholar 

  9. Beatson, R.K., Powell, M.J.D., Tan, A.M.: Fast evaluation of polyharmonic splines in three dimensions. IMA J. Numer. Anal. 27, 427–450 (2007)

    Article  MathSciNet  Google Scholar 

  10. Campagna, R., Bayona, V., Cuomo, S.: Using local PHS+poly approximations for Laplace Transform Inversion by Gaver–Stehfest algorithm. Dolomites Res. Notes Approx. 13, 55–64 (2020)

    Google Scholar 

  11. Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., Santin, G.: Partition of unity interpolation using stable kernel-based techniques. Appl. Numer. Math. 116, 95–107 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cavoretto, R., De Rossi, A.: A two-stage adaptive scheme based on RBF collocation for solving elliptic PDEs. Comput. Math. Appl. 79, 3206–3222 (2020)

    Article  MathSciNet  Google Scholar 

  13. Cavoretto, R., De Rossi, A., Mukhametzhanov, M.S., Sergeyev, Y.D.: On the search of the shape parameter in radial basis functions using univariate global optimization methods. J. Glob. Optim. 79, 305–327 (2021)

    Article  MathSciNet  Google Scholar 

  14. Cavoretto, R.: Adaptive radial basis function partition of unity interpolation: a bivariate algorithm for unstructured data. J. Sci. Comput. 87, 41 (2021)

    Article  MathSciNet  Google Scholar 

  15. Cavoretto, R., De Rossi, A., Sommariva, A., Vianello, M.: RBFCUB: a numerical package for near-optimal meshless cubature on general polygons. Appl. Math. Lett. 125, 107704 (2022)

    Article  MathSciNet  Google Scholar 

  16. Cavoretto, R.: Adaptive LOOCV-based kernel methods for solving time-dependent BVPs. Appl. Math. Comput. 429, 127228 (2022)

    MathSciNet  Google Scholar 

  17. Cavoretto, R., De Rossi, A.: An adaptive residual sub-sampling algorithm for kernel interpolation based on maximum likelihood estimations. J. Comput. Appl. Math. 418, 114658 (2023)

    Article  MathSciNet  Google Scholar 

  18. Cavoretto, R., De Rossi, A., Dell’Accio, F., Di Tommaso, F., Siar, N., Sommariva, A., Vianello, M.: Numerical cubature on scattered data by adaptive interpolation. J. Comput. Appl. Math. 444, 115793 (2024)

    Article  MathSciNet  Google Scholar 

  19. Chen, C.-S., Noorizadegan, A., Young, D.L., Chen, C.S.: On the selection of a better radial basis function and its shape parameter in interpolation problems. Appl. Math. Comput. 442, 127713 (2023)

    MathSciNet  Google Scholar 

  20. Cheng, A.H.-D.: Multiquadric and its shape parameter—a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation. Eng. Anal. Bound. Elem. 36, 220–239 (2012)

    Article  MathSciNet  Google Scholar 

  21. De Marchi, S., Martínez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. Appl. Math. 349, 331–343 (2019)

    Article  MathSciNet  Google Scholar 

  22. De Marchi, S., Martínez, A., Perracchione, E., Rossini, M.: RBF-based partition of unity methods for elliptic PDEs: adaptivity and stability issues via variably scaled kernels. J. Sci. Comput. 79, 321–344 (2019)

    Article  MathSciNet  Google Scholar 

  23. Dobravec, T., Mavric̆, B., S̆arler, B.: Acceleration of RBF-FD meshless phase-field modelling of dendritic solidification by space-time adaptive approach. Comput. Math. Appl. 126, 77–99 (2022)

  24. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev space, Constructive theory of functions of several variables, in: Springer. Lecture Notes Math. 21, 85–100 (1977)

    Article  Google Scholar 

  25. Ebrahimijahan, A., Dehghan, M., Abbaszadeh, M.: A reduced-order model based on integrated radial basis functions with partition of unity method for option pricing under jump-diffusion models. Eng. Anal. Bound. Elem. 155, 48–61 (2023)

    Article  MathSciNet  Google Scholar 

  26. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, World Scientific, 5 Toh Tuck Link, Singapore (2007)

  27. Flyer, N., Barnett, G.A., Wicker, L.J.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)

    Article  MathSciNet  Google Scholar 

  28. Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)

    Article  MathSciNet  Google Scholar 

  29. Fornberg, B., Flyer, N.: A primer on radial basis functions with applications to the geosciences. SIAM, Philadelphia (2015)

    Book  Google Scholar 

  30. Fornberg, B., Flyer, N.: Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 69, 531–544 (2015)

    Article  MathSciNet  Google Scholar 

  31. Itkin, A., Soleymani, F.: Four-factor model of quanto CDS with jumps-at-default and stochastic recovery. J. Comput. Sci. 54, 101434 (2021)

    Article  Google Scholar 

  32. Jones, A.M., Bosler, P.A., Kuberry, P.A., Wright, G.B.: Generalized moving least squares vs. radial basis function finite difference methods for approximating surface derivatives. Comput. Math. Appl. 147, 1–13 (2023)

    Article  MathSciNet  Google Scholar 

  33. Keshavarzi, C.G., Ghoreishi, F.: Numerical solution of the Allen–Cahn equation by using shifted surface spline radial basis functions. Iran. J. Numer. Anal. Optim. 10, 177–196 (2020)

    Google Scholar 

  34. Kolar-Požun, A., Jančič, M., Rot, M., Kosec, G.: Oscillatory behaviour of the RBF-FD approximation accuracy under increasing stencil size. In: Mikyska, J., et al. (eds.) ICCS 2023, pp. 515–522. LNCS 14076 (2023)

  35. Le Borne, S., Leinen, W.: Guidelines for RBF-FD discretization: Numerical experiments on the interplay of a multitude of parameter choices. J. Sci. Comput. 95, 8 (2023)

    Article  MathSciNet  Google Scholar 

  36. Li, J., Chen, Y.-T.: Computational Partial Differential Equations using MATLAB. Taylor & Francis Group, Boca Raton, FL (2008)

    Book  Google Scholar 

  37. Ling, L., Marchetti, F.: A stochastic extended Rippa’s algorithm for LpOCV. Appl. Math. Lett. 129, 107955 (2022)

    Article  MathSciNet  Google Scholar 

  38. Mangano, S.: Mathematica Cookbook. O’Reilly Media, CA, USA (2010)

    Google Scholar 

  39. Marchetti, F.: The extension of Rippa’s algorithm beyond LOOCV. Appl. Math. Lett. 120, 107262 (2021)

    Article  MathSciNet  Google Scholar 

  40. Mathews, N.H., Flyer, N., Gibson, S.E.: Solving 3D magnetohydrostatics with RBF-FD: applications to the solar corona. J. Comput. Phys. 462, 111214 (2022)

    Article  MathSciNet  Google Scholar 

  41. Melenk, J.M., Babuška, I.: Basic theory and applications: the partition of unity finite element method. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

    Article  Google Scholar 

  42. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)

    Article  MathSciNet  Google Scholar 

  43. Ranjbar, H., Ghoreishi, F.: A Hermite collocation method for approximating a class of highly oscillatory integral equations using new Gaussian radial basis functions. Calcolo 58, 21 (2021)

    Article  MathSciNet  Google Scholar 

  44. Rubasinghe, K., Yao, G., Li, W., Tsogtgerel, G.: Solving nonlinear elliptic PDEs in 2D and 3D using polyharmonic splines and low-degree of polynomials. Int. J. Comput. Methods 20, 2250051 (2023)

    Article  MathSciNet  Google Scholar 

  45. Sánchez León, J.G.: Mathematica Beyond Mathematics: The Wolfram Language in the Real World, Second Edition, CRC Press, Oxon (2023)

  46. Santos, L.G.C., Manzanares-Filho, N., Menon, G.J., Abreu, E.: Comparing RBF-FD approximations based on stabilized Gaussians and on polyharmonic splines with polynomials. Int. J. Numer. Methods Eng. 115, 462–500 (2018)

    Article  MathSciNet  Google Scholar 

  47. Schaback, R.: Error estimates and condition numbers for radial basis function interpolants. Adv. Comput. Math. 3, 251–264 (1995)

    Article  MathSciNet  Google Scholar 

  48. Schaback, R.: Error analysis of nodal meshless methods, Meshfree Methods for Partial Differential Equations VIII. Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE) 115, 117–143 (2017)

  49. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data, In: Proceedings of 23-rd National Conference, Brandon/Systems Press, Princeton, pp. 517-524 (1968)

  50. Soleymani, F., Itkin, A.: Pricing foreign exchange options under stochastic volatility and interest rates using an RBF-FD method. J. Comput. Sci. 37, 101028 (2019)

    Article  MathSciNet  Google Scholar 

  51. Tolstykh, A.I.: On using RBF–based differencing formulas for unstructured and mixed structured – unstructured grid calculations, Proc. 16th IMACS World Congress, vol. 228, pp. 4606–4624 (2000)

  52. Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33, 68–79 (2003)

  53. Tsai, C.-C., Hematiyan, M.R.: Degenerate kernels of polyharmonic and poly-Helmholtz operators in polar and spherical coordinates. Eng. Anal. Bound. Elem. 148, 137–152 (2023)

    Article  MathSciNet  Google Scholar 

  54. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge, UK (2005)

    Google Scholar 

  55. Zhou, X., Cai, Y., Tang, X., Xu, G.: Accurate and efficient numerical methods for the nonlinear Schrödinger equation with Dirac delta potential. Calcolo 60, 57 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to an anonymous referee for several suggestions on the improvement of this work.

Funding

The study was supported by Key Scientific Research Projects of Colleges and Universities in Henan Province (No. 24B110018).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in this work.

Corresponding author

Correspondence to Mahdiar Barfeie.

Ethics declarations

Conflict of interest

The authors affirm that they have no identified financial interests or personal relationships that could influence the integrity or outcomes of the research presented in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For cases where \(k = 3\) and using a stencil (12), the RBF-FD matrix becomes singular, necessitating the use of a pseudo-inverse for weight computation; analytical weights are provided exclusively for this unstructured three-point case in Table 6.

Table 6 The three-point weights for the approximating derivatives under singular cases for the linear system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Barfeie, M. & Soleymani, F. Weight calculation and convergence analysis of polyharmonic spline (PHS) with polynomials for different stencils. Calcolo 61, 22 (2024). https://doi.org/10.1007/s10092-024-00570-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-024-00570-8

Keywords

Mathematics Subject Classification

Navigation