Skip to main content
Log in

Maximum time step for high order BDF methods applied to gradient flows

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

For a backward differentiation formula (BDF) applied to the gradient flow of a semiconvex function, quadratic stability implies gradient stability. Namely, it is possible to build a Lyapunov functional for the discrete-in-time dynamical system, with a restriction on the time step. The maximum time step which can be derived from quadratic stability has previously been obtained for the BDF1, BDF2 and BDF3 schemes. Here, we compute it for the BDF4 and BDF5 methods. We also prove that the BDF6 scheme is not quadratically stable. Our results are based on the tools developed by Dahlquist and other authors to show the equivalence of A-stability and G-stability. We give several applications of gradient stability to the asymptotic behaviour of sequences generated by BDF schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005). https://doi.org/10.1137/040605266

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.: Stability of implicit–explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal. 53(1), 464–484 (2015). https://doi.org/10.1137/140962619

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrivis, G., Chen, M., Yu, F., Zhou, Z.: The energy technique for the six-step BDF method. SIAM J. Numer. Anal. 59(5), 2449–2472 (2021). https://doi.org/10.1137/21M1392656

    Article  MathSciNet  MATH  Google Scholar 

  4. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard equations. SIAM J. Sci. Comput. 41(6), A3703–A3727 (2019). https://doi.org/10.1137/19M1264412

    Article  MathSciNet  MATH  Google Scholar 

  5. Alaa, N.E., Pierre, M.: Convergence to equilibrium for discretized gradient-like systems with analytic features. IMA J. Numer. Anal. 33(4), 1291–1321 (2013). https://doi.org/10.1093/imanum/drs042

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonietti, P.F., Merlet, B., Pierre, M., Verani, M.: Convergence to equilibrium for a second-order time semi-discretization of the Cahn–Hilliard equation. AIMS Math. 1(3), 178–194 (2016). https://doi.org/10.3934/Math.2016.3.178

    Article  MATH  Google Scholar 

  7. Baiocchi, C., Crouzeix, M.: On the equivalence of \(A\)-stability and \(G\)-stability. Appl. Numer. Math. 5(1–2), 19–22 (1989). https://doi.org/10.1016/0168-9274(89)90020-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchriti, A., Pierre, M., Alaa, N.E.: Gradient stability of high-order BDF methods and some applications. J. Differ. Equ. Appl. 26(1), 74–103 (2020). https://doi.org/10.1080/10236198.2019.1709062

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouchriti, A., Pierre, M., Alaa, N.E.: Remarks on the asymptotic behavior of scalar auxiliary variable (SAV) schemes for gradient-like flows. J. Appl. Anal. Comput. 10(5), 2198–2219 (2020). https://doi.org/10.11948/20190373

    Article  MathSciNet  MATH  Google Scholar 

  10. Brachet, M., Parnaudeau, P., Pierre, M.: Convergence to equilibrium for time and space discretizations of the Cahn–Hilliard equation. Discret. Contin. Dyn. Syst. S 15(8), 1987–2031 (2022). https://doi.org/10.3934/dcdss.2022110

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973)

  12. Chill, R., Jendoubi, M.A.: Convergence to steady states in asymptotically autonomous semilinear evolution equations. Nonlinear Anal. 53(7–8), 1017–1039 (2003). https://doi.org/10.1016/S0362-546X(03)00037-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Nat. Acad. Sci. USA 38, 235–243 (1952). https://doi.org/10.1073/pnas.38.3.235

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlquist, G.: \(G\)-stability is equivalent to \(A\)-stability. BIT 18(4), 384–401 (1978). https://doi.org/10.1007/BF01932018

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993). https://doi.org/10.1137/0730084

    Article  MathSciNet  MATH  Google Scholar 

  16. Grasselli, M., Pierre, M.: Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Commun. Pure Appl. Anal. 11(6), 2393–2416 (2012). https://doi.org/10.3934/cpaa.2012.11.2393

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Springer Series in Computational Mathematics. vol. 8, 2nd edn. Springer, Berlin (1993)

  18. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-05221-7

    Book  MATH  Google Scholar 

  19. Haraux, A., Jendoubi, M.A.: The Convergence Problem for Dissipative Autonomous Systems. Classical Methods and Recent Advances. BCAM Springer Briefs. Springer Briefs in Mathematics. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao (2015). https://doi.org/10.1007/978-3-319-23407-6

  20. Horsin, T., Jendoubi, M.A.: On the convergence to equilibria of a sequence defined by an implicit scheme. Discret. Contin. Dyn. Syst. Ser. S 14(8), 3017–3025 (2021). https://doi.org/10.3934/dcdss.2020465

    Article  MathSciNet  MATH  Google Scholar 

  21. Horsin, T., Jendoubi, M.A.: Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities. Commun. Pure Appl. Anal. 21(3), 999–1025 (2022). https://doi.org/10.3934/cpaa.2022007

    Article  MathSciNet  MATH  Google Scholar 

  22. Hou, D., Azaiez, M., Xu, C.: A variant of scalar auxiliary variable approaches for gradient flows. J. Comput. Phys. 395, 307–332 (2019). https://doi.org/10.1016/j.jcp.2019.05.037

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, F., Shen, J.: A new class of implicit-explicit BDF\(k\) SAV schemes for general dissipative systems and their error analysis. Comput. Methods Appl. Mech. Eng. 392, Paper No. 114718, 25 (2022). https://doi.org/10.1016/j.cma.2022.114718

  24. Liao, H.L., Tang, T., Zhou, T.: A new discrete energy technique for multi-step backward difference formulas. CSIAM Trans. Appl. Math. 3(2), 318–334 (2022). https://doi.org/10.4208/csiam-am.SO-2021-0032

    Article  MathSciNet  Google Scholar 

  25. Łojasiewicz, S.: Ensembles semi-analytiques. I.H.E.S. Notes (1965). https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf

  26. Łojasiewicz, S.: Sur les trajectoires du gradient d’une fonction analytique. In: Geometry seminars. 1982–1983 (Bologna, 1982/1983), pp. 115–117. Univ. Stud. Bologna, Bologna (1984)

  27. Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33(4), 1365–1385 (2013). https://doi.org/10.1093/imanum/drs044

    Article  MathSciNet  MATH  Google Scholar 

  28. Merlet, B., Pierre, M.: Convergence to equilibrium for the backward Euler scheme and applications. Commun. Pure Appl. Anal. 9(3), 685–702 (2010). https://doi.org/10.3934/cpaa.2010.9.685

    Article  MathSciNet  MATH  Google Scholar 

  29. Nevanlinna, O., Odeh, F.: Multiplier techniques for linear multistep methods. Numer. Funct. Anal. Optim. 3(4), 377–423 (1981). https://doi.org/10.1080/01630568108816097

    Article  MathSciNet  MATH  Google Scholar 

  30. Palis, J., Jr., de Melo, W.: Geometric theory of dynamical systems. Springer, New York-Berlin (1982)

    Book  MATH  Google Scholar 

  31. Pierre, M.: Maximum time step for the BDF3 scheme applied to gradient flows. Calcolo 58(1), Paper No. 3, 17 (2021). https://doi.org/10.1007/s10092-020-00393-3

  32. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018). https://doi.org/10.1016/j.jcp.2017.10.021

    Article  MathSciNet  MATH  Google Scholar 

  33. Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. (2) 118(3), 525–571 (1983). https://doi.org/10.2307/2006981

    Article  MathSciNet  MATH  Google Scholar 

  34. Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics, vol. 2. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  35. Zhang, Y., Shen, J.: A generalized SAV approach with relaxation for dissipative systems. J. Comput. Phys. (2022). https://doi.org/10.1016/j.jcp.2022.111311

Download references

Acknowledgements

The author is thankful to Michel Pierre for suggesting him to investigate in detail the quadratic stability of the BDF6 scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Pierre.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Dedicated to Hélène.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, M. Maximum time step for high order BDF methods applied to gradient flows. Calcolo 59, 36 (2022). https://doi.org/10.1007/s10092-022-00479-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-022-00479-0

Keywords

Mathematics Subject Classification

Navigation