Skip to main content
Log in

Superconvergence of the space-time discontinuous Galerkin method for linear nonhomogeneous hyperbolic equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this study, we discuss the superconvergence of the space-time discontinuous Galerkin method for the first-order linear nonhomogeneous hyperbolic equation. By using the local differential projection method to construct comparison function, we prove that the numerical solution is \((2n+1)\)-th order superconvergent at the downwind-biased Radau points in the discrete \(L^2\)-norm. As a by-product, we obtain a point-wise superconvergence with order \(2n+\frac{1}{2}\) in vertices. We also find that, in order to obtain these superconvergence results, the source integral term has to be approximated by \((n+1)\)-point Radau-quadrature rule. Numerical results are presented to verify our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems Part 1: Superconvergence error analysis. J. Sci. Comput. 33, 75–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems Part II: A posteriori error estimation. J. Sci. Comput. 38, 15–49 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adjerid, S., Devine, K.D., et al.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adjerid, S., Massey, T.C.: A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 5877–5897 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adjerid, S., Massey, T.C.: Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Eng. 195, 3331–3346 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adjerid, S., Temimi, H.: A discontinuous Galerkin method for higher-order ordinary differential equations. Comput. Methods Appl. Mech. Eng. 197, 202–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adjerid, S., Weinhard, T.: Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems. Math. Comput. 80, 1335–1367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Adjerid, S., Weinhard, T.: Asymptotically exact discontinuous Galerkin error estimates for linear symmetric hyperbolic systems. Appl. Numer. Math. 76, 101–131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, W.X., Zhang, Z.M., Zou, Q.S.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52, 2555–2573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, W.X., Shu, C.W., et al.: Superconvergence of Discontinuous Galerkin Method for Scalar Nonlinear Hyperbolic Equations. SIAM J. Numer. Anal. 56, 732–765 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao, W.X., Shu, C.W., et al.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53, 1651–1671 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, W.X., Zhang, Z.M., Zou, Q.S.: Is 2k-Conjecture Valid for Finite Volume Methods? SIAM J. Numer. Anal. 53, 942–962 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, W.X., Li, D.F., et al.: Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM-Math Model. Num. 51, 467–486 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, W.X., Zhang, Z.M.: Superconvergence of Local Discontinuous Galerkin methods for one-dimensional linear parabolic equations. Math. Comput. 85, 63–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, C.M.: Structure Theory of Superconvergence for Finite Elements (in Chinese). Hunan Science and Techniques Press, Changsha (2001)

    Google Scholar 

  16. Chen, C.M.: Orthogonality correction technique in superconvergence analysis. Int. J. Numer. Anal. Model. 2, 31–42 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Chen C. M. Superconvergence of space-time discontinuous finite elements for first order hyperbolic systems. The Fifth China-Norway Sweden Workshop on Computational Mathematics, Lund, Sweden. 5-7, 2006

  18. Chen, C.M., Hu, S.F.: The highest order superconvergence for bi-\(k\) degree rectangular finite elements at nodes-A proof of "2\(k\)-conjecture." Math. Comput. 82, 1337–1355 (2013)

    Article  MATH  Google Scholar 

  19. Cheng, Y., Shu, C.W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227, 9612–9627 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, Y., Shu, C.W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Luskin, M., et al.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Kanschat, G., et al.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II. General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws, V: Multidimensional system. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \(P^1\)-discontinuous Galerkin finite element method for scalar conservation laws. ESAIM-Math Model. Num. 25, 337–361 (1991)

    Article  MATH  Google Scholar 

  28. Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36, 45–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Douglas, J., Dupont, T., Wheeler, M.F.: An \(L^{\infty }\) estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Model Math. Anal. Numer. 8, 61–66 (1974)

    MathSciNet  MATH  Google Scholar 

  30. Douglas, J., Dupont, T., Wheeler, M.F.: A Qausi-projection analysis of Galerkin methods for parabolic and hyperbolic equations. Math. Comput. 32, 345–362 (1978)

    Article  MATH  Google Scholar 

  31. Eriksson, K., Johnson, C., Thomee, V.: Time discretization of parabolic problems by discontinuous Galerkin method. RAIRO Model Math. Anal. Numer. 19, 611–643 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. He, W.M., Zhang, Z.M.: 2\(k\) superconvergence of q(\(k\)) finite elements by anisotropic mesh approximation in weighted sobolev spaces. Math. Comput. 86, 1693–1718 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, W.M., Zhang, Z.M., Zou, Q.S.: Ultraconvergence of high order FEMs for elliptic problems with variable coefficients. Numer. Math. 136, 215–248 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. He, W.M., Lin, R.C., Zhang, Z.M.: Ultraconvergence of finite element method by Richardson extrapolation for elliptic problems with constant coefficients. SIAM J. Numer. Anal. 54, 2302–2322 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hu, H.L., Chen, C.M.: Superconvergence of bi-\(k\) degree time-space fully discontinuous finite element for first-order hyperbolic equations. Adv. Appl. Math. Mech. 7, 323–337 (2015)

    Article  MathSciNet  Google Scholar 

  36. Johnson, C., Pitkarata, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986)

    Article  MathSciNet  Google Scholar 

  37. Johnson, C.: Numerical solutions of partial differential equations by the finite element Method. Studentlitteratur, Lund (1987)

    Google Scholar 

  38. Lin, Q., Zhou, A.H.: Convergence of the discontinuous Galerkin finite element method for a scalar hyperbolic equation. Acta. Math. Sci. 13, 207–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meng, X., Shu, C.W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85, 1225–1261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Meng, X., Shu, C.W., et al.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50, 2336–2356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Peterson, T.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28, 133–140 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thomee, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  43. Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–47 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Yang, Y., Shu, C.W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, T., Li, J., Zhang, S.: Superconvergence of discontinuous Galerkin methods for hyperbolic systems. J. Comput. Appl. Math. 223, 725–734 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12071128), the Excellent Youth Foundation of Hunan Province of China (Grant No. 2018JJ1042), the Research Foundation of Education Bureau of Hunan Province of China (Grant Nos. 18B002, 16C0951) and the Construct Program of the Key Discipline in Hunan Province. We would also like to thank the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmiao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Chen, C., Hu, S. et al. Superconvergence of the space-time discontinuous Galerkin method for linear nonhomogeneous hyperbolic equations. Calcolo 58, 16 (2021). https://doi.org/10.1007/s10092-021-00408-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-021-00408-7

Keywords

Mathematics Subject Classification

Navigation