Skip to main content
Log in

Structure-preserving Gauss methods for the nonlinear Schrödinger equation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We use the scalar auxiliary variable (SAV) reformulation of the nonlinear Schrödinger (NLS) equation to construct structure-preserving SAV–Gauss methods for the NLS equation, namely \(L^2\)-conservative methods satisfying a discrete analogue of the energy (the Hamiltonian) conservation of the equation. This is in contrast to Gauss methods for the standard form of the NLS equation that are \(L^2\)-conservative but not energy-conservative. We also discuss efficient linearizations of the new methods and their conservation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agrawal, G.B.: Nonlinear Fiber Optics, 3rd edn. Academic Press, London (2001)

    MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrivis, G., Dougalis, V. A., Karakashian, O.: Solving the systems of equations arising in the discretization of some nonlinear p.d.e.’s by implicit Runge–Kutta methods, (RAIRO:). Math. Model. Numer. Anal. 31, 251–287 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput. 41, A3703–A3727 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barletti, L., Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy-conserving methods for the nonlinear Schrödinger equation. Appl. Math. Comput. 318, 3–18 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Besse, C.: Schéma de relaxation pour l’équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris Sér. I(326), 1427–1432 (1998)

    Article  MATH  Google Scholar 

  7. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42, 934–952 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Besse, C., Descombes, S., Dujardin, G., Lacroix-Violet, I.: Energy preserving methods for nonlinear Schrödinger equations. IMA J. Numer. Anal. 41, 618–653 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Gallouët, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4, 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016)

    Book  MATH  Google Scholar 

  11. Brugnano, L., Iavernaro, F.: Line integral solution of differential problems. Axioms 7, 36 (2018)

    Article  MATH  Google Scholar 

  12. Brugnano, L., Iavernaro, F., Montijano, J.I., Rández, L.: Spectrally accurate space-time solution of Hamiltonian PDEs. Numer. Algorithms 81, 1183–1202 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cano, B., González-Pachón, A.: Projected explicit Lawson methods for the integration Schrödinger equation. Numer. Methods PDEs 31, 78–104 (2015)

    Article  MATH  Google Scholar 

  14. Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, D., Gauckler, L.: One-stage exponential integrators for nonlinear Schrödinger equations over long times. BIT Numer. Math. 52, 877–903 (2012)

    Article  MATH  Google Scholar 

  17. Delfour, M., Fortin, M., Payre, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44, 277–288 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fei, Z., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Feng, X., Liu, H., Ma, S.: Mass- and energy-conserved numerical schemes for nonlinear Schrödinger equations. Commun. Comput. Phys. 26, 1365–1396 (2019)

    Article  MathSciNet  Google Scholar 

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Reprint of the 2nd (2006) ed.. Springer, Heidelberg, Springer Series in Computational Mathematics v. 31 (2010)

  22. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Problems, 2nd revised ed.. Springer, Berlin, Springer Series in Computational Mathematics v. 14 (2002)

  23. Karakashian, O., Akrivis, G.D., Dougalis, V.A.: On optimal-order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30, 377–400 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36, 1779–1807 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Knöller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. SIAM J. Numer. Anal. 57, 1967–1986 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, D., Sun, W.: Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations. J. Sci. Comput. 65, 83 (2020)

    MathSciNet  Google Scholar 

  27. Mitra, I., Roy, S.: Relevance of quantum mechanics in circuit implementation of ion channels in brain dynamics. Preprint. https://arxiv.org/abs/q-bio/0606008v1 (2006)

  28. Ogawa, T.: A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14, 765–769 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Osborne, A.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Academic Press, Burlington (2010)

    MATH  Google Scholar 

  30. Pécseli, H.L.: Waves and Oscillations in Plasmas. CRC Press, Boca Raton (2013)

    Google Scholar 

  31. Rasmussen, J.J., Rypdal, K.: Blow-up in nonlinear Schrödinger equations-I: A general review. Phys. Scripta 33, 481–497 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sanz-Serna, J.M.: Runge–Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Strauss, W.A.: The nonlinear Schrödinger equation. In: de la Penha, G.M., Medeiros, L.A.J. (eds.) Contemporary Developments in Continuum Mechanics and Partial Differential Equations, pp. 452–465. North-Holland, New York (1978)

    Google Scholar 

  36. Strauss, W.A.: Nonlinear Wave Equations. AMS, Providence (1993)

    Google Scholar 

  37. Strauss, W.A., Vazquez, L.: Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse. Springer, New York (1999)

  39. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation, M\(^2\)AN Math. Model. Numer. Anal. 35, 389–405 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Zouraris, G.E.: Error estimation of the relaxation finite difference scheme for a nonlinear Schrödinger equation. Preprint. http://arxiv.org/abs/2002.09605v1 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Akrivis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Dongfang Li was partially supported by NSFC (no. 11771162 and no. 11971010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akrivis, G., Li, D. Structure-preserving Gauss methods for the nonlinear Schrödinger equation. Calcolo 58, 17 (2021). https://doi.org/10.1007/s10092-021-00405-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-021-00405-w

Keywords

Mathematics Subject Classification

Navigation