Skip to main content
Log in

On maximum residual block and two-step Gauss–Seidel algorithms for linear least-squares problems

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The block Gauss–Seidel algorithm can significantly outperform the simple randomized Gauss–Seidel algorithm for solving overdetermined least-squares problems since it moves a large block of columns rather than a single column into working memory. Here, with the help of the maximum residual rule, we construct a two-step Gauss–Seidel (2SGS) algorithm, which selects two different columns simultaneously at each iteration. As a natural extension of the 2SGS algorithm, we further propose a multi-step Gauss–Seidel algorithm, that is, the maximum residual block Gauss–Seidel (MRBGS) algorithm for solving overdetermined least-squares problems. We prove that these two different algorithms converge to the unique solution of the overdetermined least-squares problem when its coefficient matrix is of full column rank. Numerical experiments on Gaussian models as well as on 2D image reconstruction problems, show that 2SGS is more effective than the greedy randomized Gauss–Seidel algorithm, and MRBGS apparently outperforms both the greedy and randomized block Gauss–Seidel algorithms in terms of numerical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arioli, M., Duff, I.S.: Preconditioning linear least-squares problems by identifying a basis matrix. SIAM J. Sci. Comput. 37, S544–S561 (2015)

    Article  MathSciNet  Google Scholar 

  2. Auslender, A.: Optimisation M\(\acute{e}\)thodes Num\(\acute{e}\)riques. Masson, Paris (1976)

    Google Scholar 

  3. Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40, A592–A606 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z.-Z., Wu, W.-T.: On relaxed greedy randomized Kaczmarz method for solving large sparse linear systems. Appl. Math. Lett. 83, 21–26 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bai, Z.-Z., Wu, W.-T.: On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear Algebra Appl. 26, 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  7. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  8. Cenker, C., Feichtinger, H.G., Mayer, M., Steier, H., Strohmer, T.: New variants of the POCS method using affine subspaces of finite codimension, with applications to irregular sampling. In: Proceedings of SPIE: Visual Communications and Image Processing, pp. 299–310 (1992)

  9. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Du, K.: Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms. Numer. Linear Algebra Appl. 26, e2233 (2019)

    Article  MathSciNet  Google Scholar 

  11. Elad, M., Matalon, B., Zibulevsky, M.: Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization. Appl. Comput. Harmonic Anal. 23, 346–367 (2007)

    Article  MathSciNet  Google Scholar 

  12. Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Numer. Math. 35, 1–12 (1980)

    Article  MathSciNet  Google Scholar 

  13. Feichtinger, H.G., Strohmer, T.: A Kaczmarz-based approach to nonperiodic sampling on unions of rectangular lattices. In: SampTA’95: 1995 Workshop on Sampling Theory and Applications, Jurmala, Latvia, pp. 32–37(1995)

  14. Gal\(\acute{a}\)ntai, A.: Projectors and Projection Methods, Kluwer Academic Publishers, Norwell (2004)

  15. Hansen, P.C., Jorgensen, J.S.: AIR tools II: algebraic iterative reconstruction methods, improved implementation. Numer. Algorithms 79, 107–137 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hefny, A., Needell, D., Ramdas, A.: Rows versus columns: randomized Kaczmarz or Gauss-Seidel for ridge regression. SIAM J. Sci. Comput. 39, S528–S542 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hoyos-Idrobo, A., Weiss, P., Massire, A., Amadon, A., Boulant, N.: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints. IEEE Trans. Med. Imaging 33, 739–748 (2014)

    Article  Google Scholar 

  19. Ivanov, A.A.: Regularization Kaczmarz tools version 1.0 for Matlab, Matlabcentral Fileexchange. URL: http://www.mathworks.com/matlabcentral/fileexchange/43791

  20. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35, 641–654 (2010)

    Article  MathSciNet  Google Scholar 

  21. Li, H.Y., Zhang, Y.J.: Greedy block Gauss-Seidel methods for solving large linear least squares problem. arXiv preprint arXiv:2004.02476v1 (2020)

  22. Lin, Q., Lu, Z., Xiao, L.: An accelerated randomized proximal coordinate gradient method and its application to regularized empirical risk minimization. SIAM J. Optim. 25, 2244–2273 (2015)

    Article  MathSciNet  Google Scholar 

  23. Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36, 1590–1604 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ma, A., Needell, D., Ramdas, A.: Iterative methods for solving factorized linear systems. SIAM J. Matrix Anal. Appl. 39, 104–122 (2018)

    Article  MathSciNet  Google Scholar 

  25. Moorman, J.D., Tu, T.K., Molitor, D., Needell, D.: Randomized Kaczmarz with averaging. BIT Numer. Math. (2020). https://doi.org/10.1007/s10543-020-00824-1

    Article  MATH  Google Scholar 

  26. Necoara, I.: Faster randomized block Kaczmarz algorithms. SIAM J. Matrix Anal. Appl. 40, 1425–1452 (2019)

    Article  MathSciNet  Google Scholar 

  27. Necoara, I., Richtarik, P., Patrascu, A.: Randomized projection methods for convex feasibility: conditioning and convergence rates. SIAM J. Optim. 29, 2814–2852 (2019)

    Article  MathSciNet  Google Scholar 

  28. Needell, D., Tropp, J.A.: Paved with good intentions: analysis of a randomized block Kaczmarz method. Linear Algebra Appl. 441, 199–221 (2014)

    Article  MathSciNet  Google Scholar 

  29. Needell, D., Ward, R.: Two-subspace projection method for coherent overdetermined systems. J. Fourier Anal. Appl. 19, 256–269 (2013)

    Article  MathSciNet  Google Scholar 

  30. Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving least squares. Linear Algebra Appl. 484, 322–343 (2015)

    Article  MathSciNet  Google Scholar 

  31. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22, 341–362 (2012)

    Article  MathSciNet  Google Scholar 

  32. Rebrova, E., Needell, D.: On block Gaussian sketching for the Kaczmarz method. Numer. Algorithms (2020). https://doi.org/10.1007/s11075-020-00895-9

    Article  MATH  Google Scholar 

  33. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144, 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  34. Scott, J.A., Tuma, M.: Sparse stretching for solving sparse-dense linear least-squares problems. SIAM J. Sci. Comput. 41, A1604–A1625 (2019)

    Article  MathSciNet  Google Scholar 

  35. Thoppe, G., Borkar, V.S., Garg, D.: Greedy block coordinate descent (GBCD) method for high dimensional quadratic programs. arXiv preprint arXiv:1404.6635v3 (2014)

  36. Tropp, J.A.: The random paving property for uniformly bounded matrices. Studia Mathematica 185, 67–82 (2008)

    Article  MathSciNet  Google Scholar 

  37. Tropp, J.A.: Column subset selection, matrix factorization, and eigenvalue optimization. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, pp. 978–986 (2009)

  38. Wang, C., Wu, D., Yang, K.: New decentralized positioning schemes for wireless sensor networks based on recursive least-squares optimization. IEEE Wirel. Commun. Lett. 3, 78–81 (2014)

    Article  Google Scholar 

  39. Wu, W.: Paving the Randomized Gauss-Seidel Method, BSc Thesis, Scripps College, Claremont, California (2017)

  40. Zhang, J.-H., Guo, J.-H.: On relaxed greedy randomized coordinate descent methods for solving large linear least-squares problems. In: Applied Numerical Mathematics (to appear)

  41. Zhang, J.-J.: A new greedy Kaczmarz algorithm for the solution of very large linear systems. Appl. Math. Lett. 91, 207–212 (2019)

    Article  MathSciNet  Google Scholar 

  42. Zhang, Y.-J., Li, H.-Y.: A novel greedy Gauss-Seidel method for solving large linear least squares problem. arXiv preprint arXiv: 2004.03692v1 (2020)

  43. Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34, 773–793 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was supported by National Natural Science Foundation (11371243) and Key Program of Natural Science of Changzhou College of Information Technology (CXKZ201908Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Qing Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiang, XL. & Gu, CQ. On maximum residual block and two-step Gauss–Seidel algorithms for linear least-squares problems. Calcolo 58, 13 (2021). https://doi.org/10.1007/s10092-021-00404-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-021-00404-x

Keywords

Mathematics Subject Classification

Navigation