Skip to main content
Log in

The role of neuromodulation in the management of drug-resistant epilepsy

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Drug-resistant epilepsy (DRE) poses significant challenges in terms of effective management and seizure control. Neuromodulation techniques have emerged as promising solutions for individuals who are unresponsive to pharmacological treatments, especially for those who are not good surgical candidates for surgical resection or laser interstitial therapy (LiTT). Currently, there are three neuromodulation techniques that are FDA-approved for the management of DRE. These include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Device selection, optimal time, and DBS and RNS target selection can also be challenging. In general, the number and localizability of the epileptic foci, alongside the comorbidities manifested by the patients, substantially influence the selection process. In the past, the general axiom was that DBS and VNS can be used for generalized and localized focal seizures, while RNS is typically reserved for patients with one or two highly localized epileptic foci, especially if they are in eloquent areas of the brain. Nowadays, with the advance in our understanding of thalamic involvement in DRE, RNS is also very effective for general non-focal epilepsy. In this review, we will discuss the underlying mechanisms of action, patient selection criteria, and the evidence supporting the use of each technique. Additionally, we explore emerging technologies and novel approaches in neuromodulation, such as closed-loop systems. Moreover, we examine the challenges and limitations associated with neuromodulation therapies, including adverse effects, complications, and the need for further long-term studies. This comprehensive review aims to provide valuable insights on present and future use of neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Fisher RS, Van Emde BW, Blume W et al (2005) epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472. https://doi.org/10.1111/J.0013-9580.2005.66104.X

    Article  PubMed  Google Scholar 

  2. Beghi E, Giussani G, Nichols E et al (2019) Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:357–375. https://doi.org/10.1016/S1474-4422(18)30454-X

    Article  Google Scholar 

  3. Fiest KM, Sauro KM, Wiebe S et al (2017) Prevalence and incidence of epilepsy. Neurology 88:296–303. https://doi.org/10.1212/WNL.0000000000003509

    Article  PubMed  PubMed Central  Google Scholar 

  4. Colebunders R, Carter Y, J, Olore PC, et al (2018) High prevalence of onchocerciasis-associated epilepsy in villages in Maridi County, Republic of South Sudan: a community-based survey. Seizure 63:93–101. https://doi.org/10.1016/j.seizure.2018.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siewe Fodjo JN, Tatah G, Tabah EN et al (2018) Epidemiology of onchocerciasis-associated epilepsy in the Mbam and Sanaga river valleys of Cameroon: impact of more than 13 years of ivermectin. Infect Dis Poverty 7:114. https://doi.org/10.1186/s40249-018-0497-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xue T, Chen S, Bai Y et al (2022) Neuromodulation in drug-resistant epilepsy: a review of current knowledge. Acta Neurol Scand 146:786–797. https://doi.org/10.1111/ane.13696

    Article  CAS  PubMed  Google Scholar 

  7. Engelborghs S, D’Hooge R, Deyn PP De (2000) Pathophysiology of epilepsy. Acta Neurol Belg 100(4):201–213

  8. Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15. https://doi.org/10.1186/S12974-018-1192-7

  9. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15:459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  PubMed  Google Scholar 

  10. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40. https://doi.org/10.1038/nrneurol.2010.178

    Article  CAS  PubMed  Google Scholar 

  11. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319. https://doi.org/10.1056/NEJM200002033420503

    Article  CAS  PubMed  Google Scholar 

  12. Nair DR, Morrell MJ, Skarpaas TL et al (2020) Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 95:E1244–E1256. https://doi.org/10.1212/WNL.0000000000010154

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tang F, Hartz AMS, Bauer B (2017) Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol 8. https://doi.org/10.3389/FNEUR.2017.00301

  14. Hartshorn A, Jobst B (2018) Responsive brain stimulation in epilepsy. Ther Adv Chronic Dis 9:135. https://doi.org/10.1177/2040622318774173

    Article  PubMed  PubMed Central  Google Scholar 

  15. Falls N, Arango JI, Adelson PD (2022) Responsive neurostimulation in pediatric patients with drug-resistant epilepsy. Neurosurg Focus 53:E9. https://doi.org/10.3171/2022.7.FOCUS22339

    Article  PubMed  Google Scholar 

  16. Ryvlin P, Rheims S, Hirsch LJ et al (2021) Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol 20:1038–1047. https://doi.org/10.1016/S1474-4422(21)00300-8

    Article  PubMed  Google Scholar 

  17. Bergey GK, Morrell MJ, Mizrahi EM et al (2015) Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84:810–817. https://doi.org/10.1212/WNL.0000000000001280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heck CN, King-Stephens D, Massey AD et al (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia 55:432–441. https://doi.org/10.1111/EPI.12534

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rao VR (2021) Chronic electroencephalography in epilepsy with a responsive neurostimulation device: current status and future prospects. Expert Rev Med Devices 18:1093–1105. https://doi.org/10.1080/17434440.2021.1994388

    Article  CAS  PubMed  Google Scholar 

  20. Lesser RP, Lüders H, Klem G et al (1984) Cortical after discharge and functional response thresholds: results of extraoperative testing. Epilepsia 25:615–621. https://doi.org/10.1111/J.1528-1157.1984.TB03471.X

    Article  CAS  PubMed  Google Scholar 

  21. Gadot R, Korst G, Shofty B, et al (2022) Thalamic stereoelectroencephalography in epilepsy surgery: a scoping literature review. J Neurosurg 1–16. https://doi.org/10.3171/2022.1.JNS212613

  22. Skarpaas TL, Jarosiewicz B, Morrell MJ (2019) Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res 153:68–70. https://doi.org/10.1016/j.eplepsyres.2019.02.003

    Article  Google Scholar 

  23. Boddeti U, McAfee D, Khan A, et al (2022) Responsive neurostimulation for seizure control: current status and future directions. Biomedicines 10. https://doi.org/10.3390/biomedicines10112677

  24. Sun FT, Morrell MJ (2014) The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev Med Devices 11:563–572. https://doi.org/10.1586/17434440.2014.947274

    Article  CAS  PubMed  Google Scholar 

  25. Youngerman BE, Mahajan UV, Dyster TG et al (2021) Cost-effectiveness analysis of responsive neurostimulation for drug-resistant focal onset epilepsy. Epilepsia 62:2804–2813. https://doi.org/10.1111/epi.17049

    Article  PubMed  Google Scholar 

  26. Morrell MJ, RNS System in Epilepsy Study Group (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77:1295–304. https://doi.org/10.1212/WNL.0b013e3182302056

    Article  PubMed  Google Scholar 

  27. Razavi B, Rao VR, Lin C et al (2020) Real-world experience with direct brain-responsive neurostimulation for focal onset seizures. Epilepsia 61:1749–1757. https://doi.org/10.1111/epi.16593

    Article  PubMed  PubMed Central  Google Scholar 

  28. Löscher W, Schmidt D (2006) Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia 47:1253–1284. https://doi.org/10.1111/j.1528-1167.2006.00607.x

    Article  CAS  Google Scholar 

  29. Meador KJ, Kapur R, Loring DW et al (2015) Quality of life and mood in patients with medically intractable epilepsy treated with targeted responsive neurostimulation. Epilepsy Behav 45:242–247. https://doi.org/10.1016/j.yebeh.2015.01.012

    Article  PubMed  Google Scholar 

  30. Chow EY, Cong P (2023) Neurostimulation device technology. In: Rao VR (ed) Neurostimulation for Epilepsy. Elsevier, pp 31–49

  31. Loring DW, Kapur R, Meador KJ, Morrell MJ (2015) Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy. Epilepsia 56:1836–1844. https://doi.org/10.1111/epi.13191

    Article  PubMed  Google Scholar 

  32. Andrews JP, Gummadavelli A, Farooque P et al (2019) Association of seizure spread with surgical failure in epilepsy. JAMA Neurol 76:462–469. https://doi.org/10.1001/jamaneurol.2018.4316

    Article  PubMed  Google Scholar 

  33. Zaveri HP, Schelter B, Schevon CA et al (2020) Controversies on the network theory of epilepsy: debates held during the ICTALS 2019 conference. Seizure 78:78–85. https://doi.org/10.1016/j.seizure.2020.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kokkinos V, Sisterson ND, Wozny TA, Richardson RM (2019) Association of closed-loop brain stimulation neurophysiological features with seizure control among patients with focal epilepsy. JAMA Neurol 76:800–808. https://doi.org/10.1001/JAMANEUROL.2019.0658

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sisterson ND, Wozny TA, Kokkinos V et al (2019) Closed-loop brain stimulation for drug-resistant epilepsy: towards an evidence-based approach to personalized medicine. Neurotherapeutics 16:119–127. https://doi.org/10.1007/s13311-018-00682-4

    Article  PubMed  Google Scholar 

  36. Khambhati AN, Shafi A, Rao VR, Chang EF (2021) Long-term brain network reorganization predicts responsive neurostimulation outcomes for focal epilepsy. Sci Transl Med 13:. https://doi.org/10.1126/scitranslmed.abf6588

  37. Jones EG (2002) Thalamic organization and function after Cajal. Prog Brain Res 136:333–357. https://doi.org/10.1016/s0079-6123(02)36029-1

    Article  CAS  PubMed  Google Scholar 

  38. Welch WP, Hect JL, Abel TJ (2021) Case report: responsive neurostimulation of the centromedian thalamic nucleus for the detection and treatment of seizures in pediatric primary generalized epilepsy. Front Neurol 12:656585. https://doi.org/10.3389/fneur.2021.656585

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roa JA, Abramova M, Fields M, et al (2022) Responsive neurostimulation of the thalamus for the treatment of refractory epilepsy. Front Hum Neurosci 16:.https://doi.org/10.3389/fnhum.2022.926337

  40. Sussman NM, Goldman HW, Jackel RA et al (1988) Anterior thalamic stimulation in medically refractory epilepsy. Part II: preliminary clinical results Epilepsia 29:677

    Google Scholar 

  41. Elder C, Friedman D, Devinsky O et al (2019) Responsive neurostimulation targeting the anterior nucleus of the thalamus in 3 patients with treatment-resistant multifocal epilepsy. Epilepsia Open 4:187–192. https://doi.org/10.1002/epi4.12300

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ilyas A, Pizarro D, Romeo AK et al (2019) The centromedian nucleus: anatomy, physiology, and clinical implications. J Clin Neurosci 63:1–7. https://doi.org/10.1016/j.jocn.2019.01.050

    Article  PubMed  Google Scholar 

  43. Gummadavelli A, Motelow JE, Smith N et al (2015) Thalamic stimulation to improve level of consciousness after seizures: evaluation of electrophysiology and behavior. Epilepsia 56:114–124. https://doi.org/10.1111/epi.12872

    Article  PubMed  Google Scholar 

  44. Burdette D, Mirro EA, Lawrence M, Patra SE (2021) Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: a case series. Epilepsia Open 6:611–617. https://doi.org/10.1002/epi4.12524

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kwon C-S, Schupper AJ, Fields MC et al (2020) Centromedian thalamic responsive neurostimulation for Lennox-Gastaut epilepsy and autism. Ann Clin Transl Neurol 7:2035–2040. https://doi.org/10.1002/acn3.51173

    Article  PubMed  PubMed Central  Google Scholar 

  46. RNS System LGS feasibility study. ClinicalTrials.gov Identifier: NCT05339126. https://clinicaltrials.gov/ct2/show/NCT05339126

  47. Geller EB, Skarpaas TL, Gross RE et al (2017) Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 58:994–1004. https://doi.org/10.1111/epi.13740

    Article  PubMed  Google Scholar 

  48. Tran DK, Tran DC, Mnatsakayan L, et al (2020) Treatment of multi-focal epilepsy with resective surgery plus responsive neurostimulation (RNS): one institution’s experience. Front Neurol 11. https://doi.org/10.3389/fneur.2020.545074

  49. Sayed D, Chakravarthy K, Amirdelfan K, et al (2020) A comprehensive practice guideline for magnetic resonance imaging compatibility in implanted neuromodulation devices. Neuromodulation: Technology at the Neural Interface 23:893–911. https://doi.org/10.1111/ner.13233

  50. Kokoszka MA, Panov F, La Vega-Talbott M et al (2018) Treatment of medically refractory seizures with responsive neurostimulation: 2 pediatric cases. J Neurosurg Pediatr 21:421–427. https://doi.org/10.3171/2017.10.PEDS17353

    Article  PubMed  Google Scholar 

  51. Mortazavi A, Elliott R-JS, Phan TN et al (2021) Responsive neurostimulation for the treatment of medically refractory epilepsy in pediatric patients: strategies, outcomes, and technical considerations. J Neurosurg Pediatr 28:54–61. https://doi.org/10.3171/2020.11.PEDS20660

    Article  PubMed  Google Scholar 

  52. Singhal NS, Numis AL, Lee MB et al (2018) Responsive neurostimulation for treatment of pediatric drug-resistant epilepsy. Epilepsy Behav Case Rep 10:21–24. https://doi.org/10.1016/j.ebcr.2018.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nagahama Y, Zervos TM, Murata KK et al (2021) Real-world preliminary experience with responsive neurostimulation in pediatric epilepsy: a multicenter retrospective observational study. Neurosurgery 89:997–1004. https://doi.org/10.1093/neuros/nyab343

    Article  PubMed  PubMed Central  Google Scholar 

  54. Khan M, Paktiawal J, Piper RJ, et al (2021) Intracranial neuromodulation with deep brain stimulation and responsive neurostimulation in children with drug-resistant epilepsy: a systematic review. J Neurosurg Pediatr 1–10. https://doi.org/10.3171/2021.8.PEDS21201

  55. Panov F, Ganaha S, Haskell J et al (2020) Safety of responsive neurostimulation in pediatric patients with medically refractory epilepsy. J Neurosurg Pediatr 26:525–532. https://doi.org/10.3171/2020.5.PEDS20118

    Article  PubMed  Google Scholar 

  56. Gardner J (2013) A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc Stud Sci 43:707–728. https://doi.org/10.1177/0306312713483678

    Article  PubMed Central  Google Scholar 

  57. Salanova V, Sperling MR, Gross RE et al (2021) The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 62:1306–1317. https://doi.org/10.1111/epi.16895

    Article  CAS  PubMed  Google Scholar 

  58. Vetkas A, Fomenko A, Germann J et al (2022) Deep brain stimulation targets in epilepsy: systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia 63:513–524. https://doi.org/10.1111/epi.17157

    Article  PubMed  Google Scholar 

  59. Qiu X, Peng T, Lin Z et al (2021) Fixed-life or rechargeable battery for deep brain stimulation: preference and satisfaction in Chinese patients with Parkinson’s disease. Front Neurol 12:668322. https://doi.org/10.3389/fneur.2021.668322

    Article  PubMed  PubMed Central  Google Scholar 

  60. Krauss JK, Lipsman N, Aziz T et al (2021) Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 17:75–87. https://doi.org/10.1038/s41582-020-00426-z

    Article  PubMed  Google Scholar 

  61. Chan HY, Wijnen BFM, Majoie MHJM et al (2022) Economic evaluation of deep brain stimulation compared with vagus nerve stimulation and usual care for patients with refractory epilepsy: a lifetime decision analytic model. Epilepsia 63:641–651. https://doi.org/10.1111/epi.17158

    Article  Google Scholar 

  62. Laxpati NG, Kasoff WS, Gross RE (2014) Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 11:508–526. https://doi.org/10.1007/s13311-014-0279-9

    Article  CAS  PubMed Central  Google Scholar 

  63. Wu C, Sharan AD (2013) Neurostimulation for the treatment of epilepsy: a review of current surgical interventions. Neuromodul Technol Neural Interface 16:10–24. https://doi.org/10.1111/j.1525-1403.2012.00501.x

    Article  Google Scholar 

  64. King C, Parker TM, Roussos-Ross K, et al (2022) Safety of deep brain stimulation in pregnancy: a comprehensive review. Front Hum Neurosci 16. https://doi.org/10.3389/fnhum.2022.997552

  65. Oluigbo CO, Rezai AR (2013) Magnetic resonance imaging safety of deep brain stimulator devices. Handb Clin Neurol 116:73–76

  66. Rezai AR, Phillips M, Baker KB et al (2004) Neurostimulation system used for deep brain stimulation (DBS). Invest Radiol 39:300–303. https://doi.org/10.1097/01.rli.0000124940.02340.ab

    Article  Google Scholar 

  67. Henderson JM, Tkach J, Phillips M et al (2005) Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson’s disease: case report. Neurosurgery 57:E1063–E1063. https://doi.org/10.1227/01.NEU.0000180810.16964.3E

    Article  PubMed  Google Scholar 

  68. Franceschi AM, Wiggins GC, Mogilner AY et al (2016) Optimized, minimal specific absorption rate MRI for high-resolution imaging in patients with implanted deep brain stimulation electrodes. Am J Neuroradiol 37:1996–2000. https://doi.org/10.3174/ajnr.A4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fisher R, Salanova V, Witt T et al (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908. https://doi.org/10.1111/j.1528-1167.2010.02536.x

    Article  PubMed  Google Scholar 

  70. Salanova V, Witt T, Worth R et al (2015) Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84:1017–1025. https://doi.org/10.1212/WNL.0000000000001334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Velasco F, Velasco M, Jiménez F et al (2000) Predictors in the treatment of difficult-to-control seizures by electrical stimulation of the centromedian thalamic nucleus. Neurosurgery 47:295–305. https://doi.org/10.1097/00006123-200008000-00007

    Article  CAS  PubMed  Google Scholar 

  72. Fisher RS, Uematsu S, Krauss GL et al (1992) Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia 33:841–851. https://doi.org/10.1111/j.1528-1157.1992.tb02192.x

    Article  CAS  PubMed  Google Scholar 

  73. Shlobin NA, Hofmann K, Cohen NT et al (2023) Deep brain stimulation of the centromedian nucleus of the thalamus for Lennox-Gastaut syndrome: a systematic review and individual patient data analysis. Neurosurgery 92:703–715. https://doi.org/10.1227/neu.0000000000002280

    Article  PubMed  Google Scholar 

  74. Paré D, deCurtis M, Llinás R (1992) Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: extra- and intracellular study in the isolated guinea pig brain in vitro. J Neurosci 12:1867–1881. https://doi.org/10.1523/JNEUROSCI.12-05-01867.1992

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sandler RA, Song D, Hampson RE et al (2015) Hippocampal closed-loop modeling and implications for seizure stimulation design. J Neural Eng 12:056017. https://doi.org/10.1088/1741-2560/12/5/056017

    Article  PubMed  PubMed Central  Google Scholar 

  76. Barbarosie M, Avoli M (1997) CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J Neurosci 17:9308–9314. https://doi.org/10.1523/JNEUROSCI.17-23-09308.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zare M, Rezaei M, Nazari M, et al (2024) Effect of the closed‐loop hippocampal low‐frequency stimulation on seizure severity, learning, and memory in pilocarpine epilepsy rat model. CNS Neurosci Ther 30. https://doi.org/10.1111/cns.14656

  78. Jin H, Li W, Dong C et al (2016) Hippocampal deep brain stimulation in nonlesional refractory mesial temporal lobe epilepsy. Seizure 37:1–7. https://doi.org/10.1016/j.seizure.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  79. Cukiert A, Cukiert CM, Burattini JA, Mariani PP (2021) Long-term seizure outcome during continuous bipolar hippocampal deep brain stimulation in patients with temporal lobe epilepsy with or without mesial temporal sclerosis: an observational, open-label study. Epilepsia 62:190–197. https://doi.org/10.1111/epi.16776

    Article  PubMed  Google Scholar 

  80. Yan H, Toyota E, Anderson M et al (2019) A systematic review of deep brain stimulation for the treatment of drug-resistant epilepsy in childhood. J Neurosurg Pediatr 23:274–284. https://doi.org/10.3171/2018.9.PEDS18417

    Article  Google Scholar 

  81. Simpson HD, Schulze-Bonhage A, Cascino GD et al (2022) Practical considerations in epilepsy neurostimulation. Epilepsia 63:2445–2460. https://doi.org/10.1111/epi.17329

    Article  PubMed  PubMed Central  Google Scholar 

  82. Morris GL, Gloss D, Buchhalter J et al (2013) Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy. Epilepsy Curr 13:297–303. https://doi.org/10.5698/1535-7597-13.6.297

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wong S, Mani R, Danish S (2019) Comparison and selection of current implantable anti-epileptic devices. Neurotherapeutics 16:369–380. https://doi.org/10.1007/s13311-019-00727-2

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fiest KM, Dykeman J, Patten SB et al (2013) Depression in epilepsy: a systematic review and meta-analysis. Neurology 80:590–599. https://doi.org/10.1212/WNL.0b013e31827b1ae0

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kaur S, Selden NR, Aballay A (2023) Anti-inflammatory effects of vagus nerve stimulation in pediatric patients with epilepsy. Front Immunol 14:. https://doi.org/10.3389/fimmu.2023.1093574

  86. Wheless JW, Gienapp AJ, Ryvlin P (2018) Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav 88S:2–10. https://doi.org/10.1016/j.yebeh.2018.06.032

    Article  PubMed  Google Scholar 

  87. Krahl SE, Clark KB (2012) Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg Neurol Int 3:S255–S259. https://doi.org/10.4103/2152-7806.103015

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ben-Menachem E (2002) Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol 1:477–482. https://doi.org/10.1016/S1474-4422(02)00220-X

    Article  PubMed  Google Scholar 

  89. Boon P, Vonck K, van Rijckevorsel K et al (2015) A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure 32:52–61. https://doi.org/10.1016/j.seizure.2015.08.011

    Article  PubMed  Google Scholar 

  90. Fisher RS, Afra P, Macken M et al (2016) Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance-the U.S.E-37 trial. Neuromodul Technol Neural Interface 19:188–195. https://doi.org/10.1111/ner.12376

    Article  Google Scholar 

  91. Duble S, Thomas S (2017) Sudden unexpected death in epilepsy. Indian J Med Res 145:738. https://doi.org/10.4103/ijmr.IJMR_548_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fisher B, DesMarteau JA, Koontz EH, et al (2021) Responsive vagus nerve stimulation for drug resistant epilepsy: a review of new features and practical guidance for advanced practice providers. Front Neurol 11. https://doi.org/10.3389/fneur.2020.610379

  93. Toffa DH, Touma L, El Meskine T et al (2020) Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: a critical review. Seizure 83:104–123. https://doi.org/10.1016/j.seizure.2020.09.027

    Article  PubMed  Google Scholar 

  94. (1995) A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures: the Vagus Nerve Stimulation Study Group*. Neurology 45:224–230. https://doi.org/10.1212/WNL.45.2.224

  95. Handforth A, DeGiorgio CM, Schachter SC et al (1998) Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 51:48–55. https://doi.org/10.1212/WNL.51.1.48

    Article  CAS  PubMed  Google Scholar 

  96. Kawai K, Tanaka T, Baba H et al (2017) Outcome of vagus nerve stimulation for drug-resistant epilepsy: the first three years of a prospective Japanese registry. Epileptic Disord 19:327–338. https://doi.org/10.1684/epd.2017.0929

    Article  PubMed  Google Scholar 

  97. Englot DJ, Rolston JD, Wright CW et al (2016) Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery 79:345–353. https://doi.org/10.1227/NEU.0000000000001165

    Article  PubMed  Google Scholar 

  98. Farmer AD, Strzelczyk A, Finisguerra A, et al (2021) International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020). Front Hum Neurosci 14:. https://doi.org/10.3389/fnhum.2020.568051

  99. Stefan H, Kreiselmeyer G, Kerling F, et al (2012) Transcutaneous vagus nerve stimulation (t‐VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53:. https://doi.org/10.1111/j.1528-1167.2012.03492.x

  100. Bauer S, Baier H, Baumgartner C et al (2016) Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul 9:356–363. https://doi.org/10.1016/j.brs.2015.11.003

    Article  CAS  Google Scholar 

  101. Barbella G, Cocco I, Freri E et al (2018) Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy. Seizure 60:115–119. https://doi.org/10.1016/j.seizure.2018.06.016

    Article  Google Scholar 

  102. Englot DJ, Hassnain KH, Rolston JD et al (2017) Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data. Epilepsy Behav 66:4–9. https://doi.org/10.1016/j.yebeh.2016.10.005

    Article  Google Scholar 

  103. Dibué M, Greco T, Spoor JKH et al (2021) Vagus nerve stimulation in patients with Lennox-Gastaut syndrome: a meta-analysis. Acta Neurol Scand 143:497–508. https://doi.org/10.1111/ane.13375

    Article  CAS  PubMed  Google Scholar 

  104. Parhizgar F, Nugent K, Raj R (2011) Obstructive sleep apnea and respiratory complications associated with vagus nerve stimulators. J Clin Sleep Med 07:401–407. https://doi.org/10.5664/JCSM.1204

    Article  Google Scholar 

  105. Camp C, Smithson WH, Bunker M et al (2015) Impact of vagus nerve stimulation on secondary care burden in children and adults with epilepsy: review of routinely collected hospital data in England. Epilepsy Behav 52:68–73. https://doi.org/10.1016/j.yebeh.2015.08.026

    Article  Google Scholar 

  106. Helmers SL, Duh MS, Guérin A et al (2012) Clinical outcomes, quality of life, and costs associated with implantation of vagus nerve stimulation therapy in pediatric patients with drug-resistant epilepsy. Eur J Paediatr Neurol 16:449–458. https://doi.org/10.1016/j.ejpn.2012.01.001

    Article  PubMed  Google Scholar 

  107. Kopciuch D, Barciszewska A, Fliciński J et al (2019) Economic and clinical evaluation of vagus nerve stimulation therapy. Acta Neurol Scand 140:244–251. https://doi.org/10.1111/ane.13137

    Article  PubMed  Google Scholar 

  108. Benbadis SR, Nyhenhuis J, Tatum WO IV et al (2001) MRI of the brain is safe in patients implanted with the vagus nerve stimulator. Seizure 10:512–515. https://doi.org/10.1053/seiz.2001.0540

    Article  CAS  PubMed  Google Scholar 

  109. de Jonge JC, Melis GI, Gebbink TA, et al (2014) Safety of a dedicated brain <scp>MRI</scp> protocol in patients with a vagus nerve stimulator. Epilepsia 55:. https://doi.org/10.1111/epi.12774

  110. Shellock FG, Begnaud J, Inman DM (2006) Vagus nerve stimulation therapy system: In vitro evaluation of magnetic resonance imaging-related heating and function at 15 and 3 tesla. Neuromodul: Technol Neural Interface 9:204–213. https://doi.org/10.1111/j.1525-1403.2006.00061.x

    Article  Google Scholar 

  111. Dibué-Adjei M, Brigo F, Yamamoto T et al (2019) Vagus nerve stimulation in refractory and super-refractory status epilepticus – a systematic review. Brain Stimul 12:1101–1110. https://doi.org/10.1016/J.BRS.2019.05.011

    Article  PubMed  Google Scholar 

  112. Kantanen A-M, Reinikainen M, Parviainen I et al (2015) Incidence and mortality of super-refractory status epilepticus in adults. Epilepsy Behav 49:131–134. https://doi.org/10.1016/j.yebeh.2015.04.065

    Article  PubMed  Google Scholar 

  113. Mehboob S, Sureshkumar SM, Fernandes L, et al (2023) Refractory status epilepticus arrested by vagus nerve stimulation. Pract Neurol pn-2023–003896. https://doi.org/10.1136/pn-2023-003896

  114. Muthiah N, Zhang J, Remick M et al (2020) Efficacy of vagus nerve stimulation for drug-resistant epilepsy in children age six and younger. Epilepsy Behav 112:107373. https://doi.org/10.1016/j.yebeh.2020.107373

    Article  PubMed  Google Scholar 

  115. Wheless JW, Gienapp AJ, Ryvlin P (2018) Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav 88:2–10. https://doi.org/10.1016/j.yebeh.2018.06.032

    Article  Google Scholar 

  116. Salvadé A, Ryvlin P, Rossetti AO (2018) Impact of vagus nerve stimulation on sleep-related breathing disorders in adults with epilepsy. Epilepsy Behav 79:126–129. https://doi.org/10.1016/j.yebeh.2017.10.040

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NS and JG conceptualized the study. HS and AS performed the literature search and synthesis of the evidence. HS, AS, and LO wrote the first draft of the manuscript. NS and JG revised and edited the manuscript. JG supervised the drafting of the manuscript. All authors have read, edited, and approved the final version of the manuscript.

Corresponding author

Correspondence to George I. Jallo.

Ethics declarations

Ethical approval

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, H., Salama, A., Oscher, L. et al. The role of neuromodulation in the management of drug-resistant epilepsy. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07513-9

Keywords

Navigation