Skip to main content

Advertisement

Log in

Post-COVID-19 conditions: a systematic review on advanced magnetic resonance neuroimaging findings

  • COVID-19
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Post-COVID conditions (PCCs) cover a wide spectrum of lingering symptoms experienced by survivors of coronavirus disease 2019 (COVID-19). Neurological and neuropsychiatric sequelae are common in PCCs. Advanced magnetic resonance imaging (MRI) techniques can reveal subtle alterations in brain structure, function, and perfusion that underlie these sequelae. This systematic review aimed to synthesize findings from studies that used advanced MRI to characterize brain changes in individuals with PCCs. A detailed literature search was conducted in the PubMed and Scopus databases to identify relevant studies that used advanced MRI modalities, such as structural MRI (sMRI), diffusion tensor imaging (DTI), functional MRI (fMRI), and perfusion-weighted imaging (PWI), to evaluate brain changes in PCCs. Twenty-five studies met the inclusion criteria, comprising 1219 participants with PCCs. The most consistent findings from sMRI were reduced gray matter volume (GMV) and cortical thickness (CTh) in cortical and subcortical regions. DTI frequently reveals increased mean diffusivity (MD), radial diffusivity (RD), and decreased fractional anisotropy (FA) in white matter tracts (WMTs) such as the corpus callosum, corona radiata, and superior longitudinal fasciculus. fMRI demonstrated altered functional connectivity (FC) within the default mode, salience, frontoparietal, somatomotor, subcortical, and cerebellar networks. PWI showed decreased cerebral blood flow (CBF) in the frontotemporal area, thalamus, and basal ganglia. Advanced MRI shows changes in the brain networks and regions of the PCCs, which may cause neurological and neuropsychiatric problems. Multimodal neuroimaging may help understand brain-behavior relationships. Longitudinal studies are necessary to better understand the progression of these brain anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

This article contains all of the data produced or analyzed during this investigation. Any further inquiries should be forwarded to the corresponding author.

References

  1. Ghaderi S, Mohammadi S, Heidari M et al (2023) Post-COVID-19 Vaccination CNS magnetic resonance imaging findings: a systematic review. Can J Infect Dis Med Microbiol 2023:e1570830. https://doi.org/10.1155/2023/1570830

    Article  Google Scholar 

  2. Ghaderi S, Mohammadi S, Mohammadi M (2023) Obstructive sleep apnea and attention deficits: a systematic review of magnetic resonance imaging biomarkers and neuropsychological assessments. Brain Behav e3262. https://doi.org/10.1002/brb3.3262

  3. Scholkmann F, May C-A (2023) COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): similarities and differences. Pathol Res Pract 246:154497. https://doi.org/10.1016/j.prp.2023.154497

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ajčević M, Iscra K, Furlanis G et al (2023) Cerebral hypoperfusion in post-COVID-19 cognitively impaired subjects revealed by arterial spin labeling MRI. Sci Rep 13:5808. https://doi.org/10.1038/s41598-023-32275-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rezaei N (2021) Coronavirus disease - COVID-19. Springer International Publishing, Cham

    Book  Google Scholar 

  6. Ghaznavi H, Elahimanesh F, Abdolmohammadi J, Mirzaie M, Ghaderi S (2022) Low-dose radiation therapy: a treatment for pneumonia resulting from COVID-19. J Radiother Pract 21(2):263–266. https://doi.org/10.1017/S1460396920001089

  7. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int. Accessed 11 Sep 2023

  8. Wang Z, Yang L (2022) Post-acute sequelae of SARS-CoV-2 infection: a neglected public health issue. Front Public Health 10:908757. https://doi.org/10.3389/fpubh.2022.908757

  9. Cooper E, Lound A, Atchison CJ et al (2023) Awareness and perceptions of long COVID among people in the REACT programme: early insights from a pilot interview study. PLoS ONE 18:e0280943. https://doi.org/10.1371/journal.pone.0280943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chippa V, Aleem A, Anjum F (2024) Post-acute coronavirus (COVID-19) syndrome. [Updated 2023 Feb 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK570608/

  11. Davis HE, McCorkell L, Vogel JM, Topol EJ (2023) Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 21:133–146. https://doi.org/10.1038/s41579-022-00846-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowe B, Xie Y, Al-Aly Z (2023) Postacute sequelae of COVID-19 at 2 years. Nat Med 1–11. https://doi.org/10.1038/s41591-023-02521-2

  13. Perumal R, Shunmugam L, Naidoo K et al (2023) Long COVID: a review and proposed visualization of the complexity of long COVID. Front Immunol 14:1117464. https://doi.org/10.3389/fimmu.2023.1117464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Whitaker M, Elliott J, Chadeau-Hyam M et al (2022) Persistent COVID-19 symptoms in a community study of 606,434 people in England. Nat Commun 13:1957. https://doi.org/10.1038/s41467-022-29521-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Idehen JB, Kazi U, Quainoo-Acquah JA et al. On patterns of neuropsychiatric symptoms in patients with COVID-19: a systematic review of case reports. Cureus 14:e25004. https://doi.org/10.7759/cureus.25004

  16. Castanares-Zapatero D, Chalon P, Kohn L et al (2022) Pathophysiology and mechanism of long COVID: a comprehensive review. Ann Med 54:1473–1487. https://doi.org/10.1080/07853890.2022.2076901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monje M, Iwasaki A (2022) The neurobiology of long COVID. Neuron 110:3484–3496. https://doi.org/10.1016/j.neuron.2022.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohammadi M, Mohammadi S, Hadizadeh H et al (2023) Brain metastases from breast cancer using magnetic resonance imaging: a systematic review. J Med Radiat Sci. https://doi.org/10.1002/jmrs.715

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mohammadi S, Ghaderi S (2023) Motor band sign in motor neuron diseases using magnetic resonance imaging: a systematic review. Acta Neurol Scand 2023:e6677967. https://doi.org/10.1155/2023/6677967

    Article  CAS  Google Scholar 

  20. Huang S, Zhou Z, Yang D et al (2022) Persistent white matter changes in recovered COVID-19 patients at the 1-year follow-up. Brain 145:1830–1838. https://doi.org/10.1093/brain/awab435

    Article  PubMed  Google Scholar 

  21. Li R, Liu G, Zhang X et al (2023) Altered intrinsic brain activity and functional connectivity in COVID-19 hospitalized patients at 6-month follow-up. BMC Infect Dis 23:521. https://doi.org/10.1186/s12879-023-08331-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Latini F, Fahlström M, Fällmar D et al (2022) Can diffusion tensor imaging (DTI) outperform standard magnetic resonance imaging (MRI) investigations in post-COVID-19 autoimmune encephalitis? Ups J Med Sci 127:https://doi.org/10.48101/ujms.v127.8562. https://doi.org/10.48101/ujms.v127.8562

  23. Whitwell JL (2009) Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci 29:9661–9664. https://doi.org/10.1523/JNEUROSCI.2160-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han P, Stiller-Stut FP, Fjaeldstad A, Hummel T (2020) Greater hippocampal gray matter volume in subjective hyperosmia: a voxel-based morphometry study. Sci Rep 10:18869. https://doi.org/10.1038/s41598-020-75898-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rusak F, Santa Cruz R, Lebrat L et al (2022) Quantifiable brain atrophy synthesis for benchmarking of cortical thickness estimation methods. Med Image Anal 82:102576. https://doi.org/10.1016/j.media.2022.102576

    Article  PubMed  Google Scholar 

  26. Bispo DD, Brandão PR, Pereira DA, Maluf FB, Dias BA, Paranhos HR, von Glehn F, de Oliveira AC, Regattieri NA, Silva LS, Yasuda CL (2022) Brain microstructural changes and fatigue after COVID-19. Front Neurol 13:1029302. https://doi.org/10.3389/fneur.2022.1029302

  27. Ghaderi S, Karami A, Ghalyanchi-Langeroudi A et al (2023) MRI findings in movement disorders and associated sleep disturbances. Am J Nucl Med Mol Imaging 13:77–94

    PubMed  PubMed Central  Google Scholar 

  28. Teller N, Chad JA, Wong A et al (2023) Feasibility of diffusion-tensor and correlated diffusion imaging for studying white-matter microstructural abnormalities: application in COVID-19. Hum Brain Mapp 44:3998–4010. https://doi.org/10.1002/hbm.26322

    Article  PubMed  PubMed Central  Google Scholar 

  29. Benedetti F, Palladini M, Paolini M et al (2021) Brain correlates of depression, post-traumatic distress, and inflammatory biomarkers in COVID-19 survivors: a multimodal magnetic resonance imaging study. Brain Behav Immun - Health 18:100387. https://doi.org/10.1016/j.bbih.2021.100387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang S, Li X, Lv J et al (2016) Characterizing and differentiating task-based and resting state FMRI signals via two-stage sparse representations. Brain Imaging Behav 10:21–32. https://doi.org/10.1007/s11682-015-9359-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Barnden L, Thapaliya K, Eaton-Fitch N, Barth M, Marshall-Gradisnik S (2023) Altered brain connectivity in long covid during cognitive exertion: a pilot study. Front Neurosci 17:1182607. https://doi.org/10.3389/fnins.2023.1182607

  32. Haitas N, Amiri M, Wilson M et al (2021) Age-preserved semantic memory and the CRUNCH effect manifested as differential semantic control networks: an fMRI study. PLoS ONE 16:e0249948. https://doi.org/10.1371/journal.pone.0249948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bakhshi SK, Quddusi A, Mahmood SD et al. Diagnostic implications of white matter tract involvement by intra-axial brain tumors. Cureus 13:e19355. https://doi.org/10.7759/cureus.19355

  34. Gerrish AC, Thomas AG, Dineen RA (2014) Brain white matter tracts: functional anatomy and clinical relevance. Semin Ultrasound CT MRI 35:432–444. https://doi.org/10.1053/j.sult.2014.06.003

    Article  Google Scholar 

  35. Parente F, Colosimo A (2020) Functional connections between and within brain subnetworks under resting-state. Sci Rep 10:3438. https://doi.org/10.1038/s41598-020-60406-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muccioli L, Sighinolfi G, Mitolo M et al (2023) Cognitive and functional connectivity impairment in post-COVID-19 olfactory dysfunction. Neuroimage Clin 38:103410. https://doi.org/10.1016/j.nicl.2023.103410

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim WSH, Ji X, Roudaia E et al (2022) MRI assessment of cerebral blood flow in nonhospitalized adults who self-isolated due to COVID-19. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28555

    Article  PubMed  PubMed Central  Google Scholar 

  38. Qin Y, Wu J, Chen T et al (2021) Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest 131(e147329):147329. https://doi.org/10.1172/JCI147329

    Article  PubMed  Google Scholar 

  39. Yus M, Matias-Guiu JA, Gil-Martínez L et al (2022) Persistent olfactory dysfunction after COVID-19 is associated with reduced perfusion in the frontal lobe. Acta Neurol Scand 146:194–198. https://doi.org/10.1111/ane.13627

    Article  CAS  PubMed  Google Scholar 

  40. Díez-Cirarda M, Yus M, Gómez-Ruiz N et al (2023) Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain 146:2142–2152. https://doi.org/10.1093/brain/awac384

    Article  PubMed  Google Scholar 

  41. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wells, G., Shea, B., O’Connell, D., and Peterson, J. (2000). The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. Ottawa, on: Ottawa Hosp Res Inst. Available at: https://cir.nii.ac.jp/crid/1573950400281078528. Accessed 28 Feb 2024

  43. Lo CK-L, Mertz D, Loeb M (2014) Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol 14:45. https://doi.org/10.1186/1471-2288-14-45

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  45. Recommendations for national SARS-CoV-2 testing strategies and diagnostic capacities. https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-lab-testing-2021.1-eng. Accessed 18 Dec 2023

  46. Kamasak B, Ulcay T, Nisari M et al (2023) Effects of COVID-19 on brain and cerebellum: a voxel based morphometrical analysis. Bratisl Lek Listy 124:442–448. https://doi.org/10.4149/BLL_2023_068

    Article  PubMed  Google Scholar 

  47. Campabadal A, Oltra J, Junqué C et al (2023) Structural brain changes in post-acute COVID-19 patients with persistent olfactory dysfunction. Ann Clin Transl Neurol 10:195–203. https://doi.org/10.1002/acn3.51710

    Article  CAS  PubMed  Google Scholar 

  48. Rothstein TL (2023) Cortical Grey matter volume depletion links to neurological sequelae in post COVID-19 “long haulers.” BMC Neurol 23:22. https://doi.org/10.1186/s12883-023-03049-1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Du Y, Zhao W, Huang S et al (2023) Two-year follow-up of brain structural changes in patients who recovered from COVID-19: a prospective study. Psychiatry Res 319:114969. https://doi.org/10.1016/j.psychres.2022.114969

    Article  PubMed  Google Scholar 

  50. Planchuelo-Gómez Á, García-Azorín D, Guerrero ÁL et al (2023) Structural brain changes in patients with persistent headache after COVID-19 resolution. J Neurol 270:13–31. https://doi.org/10.1007/s00415-022-11398-z

    Article  PubMed  Google Scholar 

  51. Besteher B, Machnik M, Troll M et al (2022) Larger gray matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res 317:114836. https://doi.org/10.1016/j.psychres.2022.114836

    Article  PubMed  PubMed Central  Google Scholar 

  52. Esposito F, Cirillo M, De Micco R et al (2022) Olfactory loss and brain connectivity after COVID-19. Hum Brain Mapp 43:1548–1560. https://doi.org/10.1002/hbm.25741

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yildirim D, Kandemirli SG, Tekcan Sanli DE et al (2022) A comparative olfactory MRI, DTI and fMRI study of COVID-19 related anosmia and post viral olfactory dysfunction. Acad Radiol 29:31–41. https://doi.org/10.1016/j.acra.2021.10.019

    Article  PubMed  Google Scholar 

  54. Lu Y, Li X, Geng D et al (2020) Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine 25:100484. https://doi.org/10.1016/j.eclinm.2020.100484

    Article  PubMed  PubMed Central  Google Scholar 

  55. Petersen M, Nägele FL, Mayer C et al (2023) Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Proc Natl Acad Sci U S A 120:e2217232120. https://doi.org/10.1073/pnas.2217232120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paolini M, Palladini M, Mazza MG et al (2023) Brain correlates of subjective cognitive complaints in COVID-19 survivors: a multimodal magnetic resonance imaging study. Eur Neuropsychopharmacol 68:1–10. https://doi.org/10.1016/j.euroneuro.2022.12.002

    Article  CAS  PubMed  Google Scholar 

  57. Huang S, Zhou X, Zhao W et al (2023) Dynamic white matter changes in recovered COVID-19 patients: a two-year follow-up study. Theranostics 13:724–735. https://doi.org/10.7150/thno.79902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Catalogna M, Sasson E, Hadanny A et al (2022) Effects of hyperbaric oxygen therapy on functional and structural connectivity in post-COVID-19 condition patients: a randomized, sham-controlled trial. Neuroimage Clin 36:103218. https://doi.org/10.1016/j.nicl.2022.103218

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yang L, Zhou M, Li L et al (2021) Characteristics of mental health implications and plasma metabolomics in patients recently recovered from COVID-19. Transl Psychiatry 11:307. https://doi.org/10.1038/s41398-021-01426-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chang L, Ryan MC, Liang H et al (2023) Changes in brain activation patterns during working memory tasks in people with post-COVID condition and persistent neuropsychiatric symptoms. Neurology 100:e2409–e2423. https://doi.org/10.1212/WNL.0000000000207309

    Article  CAS  PubMed  Google Scholar 

  61. Voruz P, Cionca A, Jacot de Alcântara I et al (2023) Brain functional connectivity alterations associated with neuropsychological performance 6–9 months following SARS-CoV-2 infection. Hum Brain Mapp 44:1629–1646. https://doi.org/10.1002/hbm.26163

    Article  PubMed  Google Scholar 

  62. Harciarek M, Cosentino S (2013) Language, executive function and social cognition in the diagnosis of frontotemporal dementia syndromes. Int Rev Psychiatry 25:178–196. https://doi.org/10.3109/09540261.2013.763340

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nowrangi MA, Lyketsos C, Rao V, Munro CA (2014) Systematic review of neuroimaging correlates of executive functioning: converging evidence from different clinical populations. J Neuropsychiatry Clin Neurosci 26:114–125. https://doi.org/10.1176/appi.neuropsych.12070176

    Article  PubMed  PubMed Central  Google Scholar 

  64. Narvacan K, Treit S, Camicioli R et al (2017) Evolution of deep gray matter volume across the human lifespan. Hum Brain Mapp 38:3771–3790. https://doi.org/10.1002/hbm.23604

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chiu A, Fischbein N, Wintermark M et al (2021) COVID-19-induced anosmia associated with olfactory bulb atrophy. Neuroradiology 63:147–148. https://doi.org/10.1007/s00234-020-02554-1

    Article  PubMed  Google Scholar 

  66. Tai AP-L, Leung M-K, Lau BW-M et al (2023) Olfactory dysfunction: a plausible source of COVID-19-induced neuropsychiatric symptoms. Front Neurosci 17:1156914. https://doi.org/10.3389/fnins.2023.1156914

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ghaderi S, Fatehi F, Kalra S, Batouli SAH (2023) MRI biomarkers for memory-related impairment in amyotrophic lateral sclerosis: a systematic review. Amyotroph Lateral Scler Frontotemporal Degeneration 0:1–17. https://doi.org/10.1080/21678421.2023.2236651

    Article  CAS  Google Scholar 

  68. Aung WY, Mar S, Benzinger TL (2013) Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med 5:427–440. https://doi.org/10.2217/iim.13.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Di Tella S, De Marco M, Baglio F, Silveri MC, Venneri A (2023) Resting-state functional connectivity is modulated by cognitive reserve in early Parkinson’s disease. Front Psychol 14:1207988. https://doi.org/10.3389/fpsyg.2023.1207988

  70. Catalino MP, Yao S, Green DL et al (2020) Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging. Neurosurg Focus 48:E9. https://doi.org/10.3171/2019.11.FOCUS19773

    Article  PubMed  PubMed Central  Google Scholar 

  71. Huang H, Chen C, Rong B et al (2022) Resting-state functional connectivity of salience network in schizophrenia and depression. Sci Rep 12:11204. https://doi.org/10.1038/s41598-022-15489-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keilholz S, Caballero-Gaudes C, Bandettini P et al (2017) Time-resolved resting-state functional magnetic resonance imaging analysis: current status, challenges, and new directions. Brain Connect 7:465–481. https://doi.org/10.1089/brain.2017.0543

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ghaderi S, Olfati M, Ghaderi M et al (2023) Neurological manifestation in COVID-19 disease with neuroimaging studies. Am J Neurodegener Dis 12:42–84

    PubMed  PubMed Central  Google Scholar 

  74. Cascella M, De Blasio E (2022) Features and management of acute and chronic neuro-COVID. Springer International Publishing, Cham

    Book  Google Scholar 

  75. Yadav SK, Kumar R, Macey PM et al (2013) Regional cerebral blood flow alterations in obstructive sleep apnea. Neurosci Lett 555:159–164. https://doi.org/10.1016/j.neulet.2013.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang Y, Xu H, Deng Z et al (2022) Functional connectivity and structural changes of thalamic subregions in episodic migraine. J Headache Pain 23:119. https://doi.org/10.1186/s10194-022-01491-z

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vlaicu SI, Tatomir A, Cuevas J et al (2023) COVID, complement, and the brain. Front Immunol 14:1216457. https://doi.org/10.3389/fimmu.2023.1216457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SM and SG: conceptualization, methodology/study design, data curation, writing—original draft preparation, visualization, investigation, supervision, validation, writing—reviewing, and editing.

Corresponding author

Correspondence to Sadegh Ghaderi.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S., Ghaderi, S. Post-COVID-19 conditions: a systematic review on advanced magnetic resonance neuroimaging findings. Neurol Sci 45, 1815–1833 (2024). https://doi.org/10.1007/s10072-024-07427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-024-07427-6

Keywords

Navigation