Skip to main content
Log in

Cerebral hemodynamics and cognitive functions in the acute and subacute stage of mild ischemic stroke: a longitudinal pilot study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The association between cerebral hemodynamics and cognitive impairment has been reported in neurodegenerative and cerebrovascular disorders (CVD). However, it is still unclear whether changes occur in the acute phase of CVD. Here we investigated cognitive and hemodynamic parameters and their association in patients with CVD during the acute and subacute phases. Seventy-three patients with mild stroke, not undergoing endovascular treatment, were recruited. All subjects were devoid of intracranial or external carotid stenosis, significant chronic cerebrovascular pathology, dementia or non-compensated cardiovascular diseases. Patients were evaluated within 7 days from symptoms onset (T1) and after 3 months (T2). Clinical and demographic data were collected. NIHSS, MoCA, FAB, and Word-Color Stroop test (WCST) were used to evaluate disease severity and cognitive functions. Basal hemodynamic parameters in the middle cerebral artery were measured with transcranial Doppler. Differences between T2 and T1, correlations between cognitive and hemodynamic variables at T1 and T2, as well as correlations between the T2-T1 variation in cognitive and hemodynamic parameters were assessed. At T1, cognitive performance of MoCA, FAB, and WCST was lower compared with T2; and pulsatility index, a parameter reflecting distal vascular resistance, was higher. However, no correlations between the changes in cognitive and hemodynamic variables were found; therefore, the two seems to be independent phenomena. In the acute phase, the linear association between cerebral blood flow and cognitive performances was lost, probably due to a differential effect of microenvironment changes and vascular-specific phenomena on cognition and cerebral hemodynamics. This relationship was partially restored in the subacute phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101:1487–1559. https://doi.org/10.1152/physrev.00022.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kugler EC, Greenwood J, MacDonald RB (2021) The “Neuro-Glial-Vascular” Unit: the role of glia in neurovascular unit formation and dysfunction. Front Cell Dev Biol 9:732820. https://doi.org/10.3389/fcell.2021.732820

    Article  PubMed  PubMed Central  Google Scholar 

  3. Herzig R, Hlustík P, Skoloudík D et al (2008) Assessment of the cerebral vasomotor reactivity in internal carotid artery occlusion using a transcranial Doppler sonography and functional MRI. J Neuroimaging 18:38–45. https://doi.org/10.1111/j.1552-6569.2007.00168.x

    Article  PubMed  Google Scholar 

  4. Valdueza JM, Balzer JO, Villringer A et al (1997) Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. AJNR Am J Neuroradiol 18:1929–1934

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Herrera CRC, Beltramini GC, Avelar WM et al (2016) Cerebral vasomotor reactivity assessment using transcranial Doppler and MRI with apnea test. Braz J Med Biol Res 49:e5437. https://doi.org/10.1590/1414-431X20165437

    Article  PubMed  Google Scholar 

  6. Sun J-H, Tan L, Yu J-T (2014) Post-stroke cognitive impairment: epidemiology, mechanisms and management. Ann Transl Med 2:80. https://doi.org/10.3978/j.issn.2305-5839.2014.08.05

    Article  PubMed  PubMed Central  Google Scholar 

  7. van Rooij FG, Kessels RPC, Richard E et al (2016) Cognitive impairment in transient ischemic attack patients: a systematic review. Cerebrovasc Dis 42:1–9. https://doi.org/10.1159/000444282

    Article  PubMed  Google Scholar 

  8. Riepe MW, Riss S, Bittner D, Huber R (2004) Screening for cognitive impairment in patients with acute stroke. Dement Geriatr Cogn Disord 17:49–53. https://doi.org/10.1159/000074082

    Article  PubMed  Google Scholar 

  9. Rost NS, Brodtmann A, Pase MP et al (2022) Post-stroke cognitive impairment and dementia. Circ Res 130:1252–1271. https://doi.org/10.1161/CIRCRESAHA.122.319951

    Article  CAS  PubMed  Google Scholar 

  10. Leśniak M, Bak T, Czepiel W et al (2008) Frequency and prognostic value of cognitive disorders in stroke patients. Dement Geriatr Cogn Disord 26:356–363. https://doi.org/10.1159/000162262

    Article  PubMed  Google Scholar 

  11. Sforza M, Bianchini E, Alivernini D et al (2022) The impact of cerebral vasomotor reactivity on cerebrovascular diseases and cognitive impairment. J Neural Transm (Vienna) 129:1321–1330. https://doi.org/10.1007/s00702-022-02546-w

    Article  PubMed  Google Scholar 

  12. Sivakumar L, Riaz P, Kate M et al (2017) White matter hyperintensity volume predicts persistent cognitive impairment in transient ischemic attack and minor stroke. Int J Stroke 12:264–272. https://doi.org/10.1177/1747493016676612

    Article  PubMed  Google Scholar 

  13. Altmann M, Thommessen B, Rønning OM et al (2016) Middle cerebral artery pulsatility index is associated with cognitive impairment in lacunar stroke. J Neuroimaging 26:431–435. https://doi.org/10.1111/jon.12335

    Article  PubMed  Google Scholar 

  14. Viticchi G, Falsetti L, Potente E et al (2021) Impact of carotid stenosis on cerebral hemodynamic failure and cognitive impairment progression: a narrative review. Ann Transl Med 9:1209. https://doi.org/10.21037/atm-20-7226

    Article  PubMed  PubMed Central  Google Scholar 

  15. von Reutern G-M, Goertler M-W, Bornstein NM et al (2012) Grading carotid stenosis using ultrasonic methods. Stroke 43:916–921. https://doi.org/10.1161/STROKEAHA.111.636084

    Article  Google Scholar 

  16. Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356. https://doi.org/10.2214/ajr.149.2.351

    Article  CAS  PubMed  Google Scholar 

  17. Brott T, Adams HP, Olinger CP et al (1989) Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20:864–870. https://doi.org/10.1161/01.str.20.7.864

    Article  CAS  PubMed  Google Scholar 

  18. Saver JL, Chaisinanunkul N, Campbell BCV et al (2021) Standardized nomenclature for modified Rankin Scale global disability outcomes: consensus recommendations from Stroke Therapy Academic Industry Roundtable XI. Stroke 52:3054–3062. https://doi.org/10.1161/STROKEAHA.121.034480

    Article  PubMed  Google Scholar 

  19. Nasreddine ZS, Phillips NA, Bédirian V et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  20. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a Frontal Assessment Battery at bedside. Neurology 55:1621–1626. https://doi.org/10.1212/wnl.55.11.1621

    Article  CAS  PubMed  Google Scholar 

  21. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662. https://doi.org/10.1037/h0054651

    Article  Google Scholar 

  22. Scarpina F, Tagini S (2017) The Stroop Color and Word Test. Front Psychol 8:557. https://doi.org/10.3389/fpsyg.2017.00557

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edwards JD, Jacova C, Sepehry AA et al (2013) A quantitative systematic review of domain-specific cognitive impairment in lacunar stroke. Neurology 80:315–322. https://doi.org/10.1212/WNL.0b013e31827deb85

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lapi D, Colantuoni A (2015) Remodeling of cerebral microcirculation after ischemia-reperfusion. J Vasc Res 52:22–31. https://doi.org/10.1159/000381096

    Article  CAS  PubMed  Google Scholar 

  25. Suministrado MSP, Shuang EWY, Xu J et al (2017) Poststroke cognitive decline is independent of longitudinal changes in cerebral hemodynamics parameters. J Neuroimaging 27:326–332. https://doi.org/10.1111/jon.12395

    Article  PubMed  Google Scholar 

  26. Kidwell CS, el-Saden S, Livshits Z et al (2001) Transcranial Doppler pulsatility indices as a measure of diffuse small-vessel disease. J Neuroimaging 11:229–235. https://doi.org/10.1111/j.1552-6569.2001.tb00039.x

    Article  CAS  PubMed  Google Scholar 

  27. Salinet ASM, Panerai RB, Robinson TG (2014) The longitudinal evolution of cerebral blood flow regulation after acute ischaemic stroke. Cerebrovasc Dis Extra 4:186–197. https://doi.org/10.1159/000366017

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sabayan B, Jansen S, Oleksik AM et al (2012) Cerebrovascular hemodynamics in Alzheimer’s disease and vascular dementia: a meta-analysis of transcranial Doppler studies. Ageing Res Rev 11:271–277. https://doi.org/10.1016/j.arr.2011.12.009

    Article  PubMed  Google Scholar 

  29. Ogoh S (2017) Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci 67:345–351. https://doi.org/10.1007/s12576-017-0525-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leeuwis AE, Smith LA, Melbourne A et al (2018) Cerebral blood flow and cognitive functioning in a community-based, multi-ethnic cohort: the Sabre study. Front Aging Neurosci 10:279. https://doi.org/10.3389/fnagi.2018.00279

    Article  PubMed  PubMed Central  Google Scholar 

  31. Uzuner N, Özdemir Ö, Tekgöl Uzuner G (2013) Relationship between pulsatility index and clinical course of acute ischemic stroke after thrombolytic treatment. Biomed Res Int 2013:265171. https://doi.org/10.1155/2013/265171

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chi N-F, Hu H-H, Chan L et al (2020) Impaired cerebral autoregulation is associated with poststroke cognitive impairment. Ann Clin Transl Neurol 7:1092–1102. https://doi.org/10.1002/acn3.51075

    Article  PubMed  PubMed Central  Google Scholar 

  33. Freitas-Andrade M, Raman-Nair J, Lacoste B (2020) Structural and functional remodeling of the brain vasculature following stroke. Front Physiol 11:948. https://doi.org/10.3389/fphys.2020.00948

    Article  PubMed  PubMed Central  Google Scholar 

  34. Iadecola C, Smith EE, Anrather J et al (2023) The neurovasculome: key roles in brain health and cognitive impairment: a scientific statement from the American Heart Association/American Stroke Association. Stroke 54:e251–e271. https://doi.org/10.1161/STR.0000000000000431

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Veluw SJ, Hou SS, Calvo-Rodriguez M et al (2020) Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105:549-561.e5. https://doi.org/10.1016/j.neuron.2019.10.033

    Article  CAS  PubMed  Google Scholar 

  36. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M et al (2020) Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 16:30–42. https://doi.org/10.1038/s41582-019-0281-2

    Article  CAS  PubMed  Google Scholar 

  37. Forró T, Bajkó Z, Bălașa A, Bălașa R (2021) Dysfunction of the neurovascular unit in ischemic stroke: highlights on microRNAs and exosomes as potential biomarkers and therapy. Int J Mol Sci 22:5621. https://doi.org/10.3390/ijms22115621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang L, Xiong X, Zhang L, Shen J (2021) Neurovascular unit: a critical role in ischemic stroke. CNS Neurosci Ther 27:7–16. https://doi.org/10.1111/cns.13561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jordan JD, Powers WJ (2012) Cerebral autoregulation and acute ischemic stroke. Am J Hypertens 25:946–950. https://doi.org/10.1038/ajh.2012.53

    Article  PubMed  Google Scholar 

  40. Wang C, Miao P, Liu J et al (2019) Cerebral blood flow features in chronic subcortical stroke: Lesion location-dependent study. Brain Res 1706:177–183. https://doi.org/10.1016/j.brainres.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  41. Toyoda K, Minematsu K, Yamaguchi T (1994) Long-term changes in cerebral blood flow according to different types of ischemic stroke. J Neurol Sci 121:222–228. https://doi.org/10.1016/0022-510x(94)90356-5

    Article  CAS  PubMed  Google Scholar 

  42. Salinet ASM, Robinson TG (1985) Panerai RB (2015) Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation. J Appl Physiol 118:170–177. https://doi.org/10.1152/japplphysiol.00620.2014

    Article  Google Scholar 

  43. Aries MJ, Elting JW, Stewart R et al (2013) Cerebral blood flow velocity changes during upright positioning in bed after acute stroke: an observational study. BMJ Open 3:e002960. https://doi.org/10.1136/bmjopen-2013-002960

    Article  PubMed  PubMed Central  Google Scholar 

  44. Venkatakrishnan S, Khanna M, Gupta A (2022) Transcranial color coded duplex sonography findings in stroke patients undergoing rehabilitation: an observational study. J Neurosci Rural Pract 13:129–133. https://doi.org/10.1055/s-0041-1742158

    Article  PubMed  PubMed Central  Google Scholar 

  45. Salinet AS, Silva NC, Caldas J et al (2019) Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: influence of severity? J Cereb Blood Flow Metab 39:2277–2285. https://doi.org/10.1177/0271678X18794835

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Michela Sforza, Edoardo Bianchini and Giuliano Sette; methodology, Michela Sforza and Giuliano Sette; formal analysis, Edoardo Bianchini.; participants recruitment, Michela Sforza, Edoardo Bianchini and Diletta Alivernini; investigation, Michela Sforza, Diletta Alivernini, Alessandra Spalloni, Valentina Teresi, Irene Madonia, and Giuliano Sette; data curation, Michela Sforza and Edoardo Bianchini; writing—original draft preparation, Michela Sforza and Edoardo Bianchini; writing—review and editing, Diletta Alivernini, Alessandra Spalloni, Valentina Teresi, Irene Madonia, Marco Salvetti, Francesco E. Pontieri, and Giuliano Sette; supervision, Francesco E. Pontieri and Giuliano Sette. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Giuliano Sette.

Ethics declarations

Ethics approval

Ethical approval was granted by the Local Ethical Committee of Sapienza University of Rome (Ref. CE 6584_2021). The study was conducted in accordance with the Declaration of Helsinki and its later amendments. Data collection and processing followed the current European regulation for data protection.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Michela Sforza and Edoardo Bianchini contributed equally to the work and share co-first authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sforza, M., Bianchini, E., Alivernini, D. et al. Cerebral hemodynamics and cognitive functions in the acute and subacute stage of mild ischemic stroke: a longitudinal pilot study. Neurol Sci 45, 2097–2105 (2024). https://doi.org/10.1007/s10072-023-07260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07260-3

Keywords

Navigation