Skip to main content

Advertisement

Log in

The volume and structural covariance network of thalamic nuclei in patients with Wilson’s disease: an investigation of the association with neurological impairment

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

This study aimed to examine the volumes of thalamic nuclei and the intrinsic thalamic network in patients with Wilson's disease (WDs), and to explore the correlation between these volumes and the severity of neurological symptoms.

Methods

A total of 61 WDs and 33 healthy controls (HCs) were included in the study. The volumes of 25 bilateral thalamic nuclei were measured using structural imaging analysis with Freesurfer, and the intrinsic thalamic network was evaluated through structural covariance network (SCN) analysis.

Results

The results indicated that multiple thalamic nuclei were smaller in WDs compared to HCs, including mediodorsal medial magnocellular (MDm), anterior ventral (AV), central median (CeM), centromedian (CM), lateral geniculate (LGN), limitans-suprageniculate (L-Sg), reuniens-medial ventral (MV), paracentral (Pc), parafascicular (Pf), paratenial (Pt), pulvinar anterior (PuA), pulvinar inferior (PuI), pulvinar medial (PuM), ventral anterior (VA), ventral anterior magnocellular (VAmc), ventral lateral anterior (VLa), ventral lateral posterior (VLp), ventromedial (VM), ventral posterolateral (VPL), and right middle dorsal intralaminar (MDI). The study also found a negative correlation between the UWDRS scores and the volume of the right MDm. The intrinsic thalamic network analysis showed abnormal topological properties in WDs, including increased mean local efficiency, modularity, normalized clustering coefficient, small-world index, and characteristic path length, and a corresponding decrease in mean node betweenness centrality. WDs with cerebral involvement had a lower modularity compared to HCs.

Conclusions

The findings suggest that the majority of thalamic nuclei in WDs exhibit significant volume reduction, and the atrophy of the right MDm is closely related to the severity of neurological symptoms. The intrinsic thalamic network in WDs demonstrated abnormal topological properties, indicating a close relationship with neurological impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the findings of this study can be obtained upon request from the corresponding author, Wenbin Hu.

References

  1. Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML (2018) Wilson disease. Nat Rev Dis Primers 4(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guindi M (2019) Wilson disease. Semin Diagn Pathol 36(6):415–422

    Article  PubMed  Google Scholar 

  3. Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfeiffer RF (2016) Wilson disease. Continuum (Minneapolis, Minn.) 22(4 Movement Disorders):1246–1261

  5. Smolinski L, Ziemssen T, Akgun K, Antos A, Skowrońska M, Kurkowska-Jastrzębska I, Członkowska A, Litwin T (2022) Brain atrophy is substantially accelerated in neurological Wilson’s disease: a longitudinal study. Mov Disord 37(12):2446–2451

    Article  PubMed  Google Scholar 

  6. Ge X, Wang L, Pan L, Ye H, Zhu X, Fan S, Feng Q, Yu W, Ding Z (2022) Amplitude of low-frequency fluctuation after a single-trigger pain in patients with classical trigeminal neuralgia. J Headache Pain 23(1):117

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yu XE, Gao S, Yang RM, Han YZ (2019) MR imaging of the brain in neurologic Wilson disease. AJNR Am J Neuroradiol 40(1):178–183

    Article  PubMed  PubMed Central  Google Scholar 

  8. Litwin T, Dzieżyc K, Karliński M, Chabik G, Czepiel W, Członkowska A (2015) Early neurological worsening in patients with Wilson’s disease. J Neurol Sci 355(1–2):162–167

    Article  PubMed  Google Scholar 

  9. Zou L, Song Y, Zhou X, Chu J, Tang X (2019) Regional morphometric abnormalities and clinical relevance in Wilson’s disease. Mov Disord 34(4):545–554

    Article  PubMed  Google Scholar 

  10. Shribman S, Bocchetta M, Sudre CH, Acosta-Cabronero J, Burrows M, Cook P, Thomas DL, Gillett GT, Tsochatzis EA, Bandmann O, Rohrer JD, Warner TT (2022) Neuroimaging correlates of brain injury in Wilson’s disease: a multimodal, whole-brain MRI study. Brain 145(1):263–275

    Article  PubMed  Google Scholar 

  11. Wang A, Wu H, Xu C, Tang L, Lee J, Wang M, Jiang M, Li C, Lu Q, Zhang C (2017) Study on lesion assessment of cerebello-thalamo-cortical network in Wilson’s disease with diffusion tensor imaging. Neural Plast 2017:7323121

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–140

    Article  PubMed  Google Scholar 

  13. Wang P, Li W, Zhu H, Liu X, Yu T, Zhang D, Zhang Y (2022) Reorganization of the brain structural covariance network in ischemic moyamoya disease revealed by graph theoretical analysis. Front Aging Neurosci 14:788661

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J (2013) The convergence of maturational change and structural covariance in human cortical networks. J Neurosci 33(7):2889–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li S, Bai R, Yang Y, Zhao R, Upreti B, Wang X, Liu S, Cheng Y, Xu J (2022) Abnormal cortical thickness and structural covariance networks in systemic lupus erythematosus patients without major neuropsychiatric manifestations. Arthritis Res Ther 24(1):259

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hong W, Li M, Liu Z, Li X, Huai H, Jia D, Jin W, Zhao Z, Liu L, Li J, Sun F, Xu R, Zhao Z (2021) Heterogeneous alterations in thalamic subfields in major depression disorder. J Affect Disord 295:1079–1086

    Article  PubMed  Google Scholar 

  17. Iglesias JE, Insausti R, Lerma-Usabiaga G, Bocchetta M, Van Leemput K, Greve DN, van der Kouwe A, Fischl B, Caballero-Gaudes C, Paz-Alonso PM (2018) A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183:314–326

    Article  PubMed  Google Scholar 

  18. Hou W, Zheng SJ, Duan Z (2022) Interpretation of the 2022 edition guidelines for hepatolenticular degeneration diagnosis and treatment. Zhonghua Gan Zang Bing Za Zhi 30(3):276–278

  19. Leinweber B, Möller JC, Scherag A, Reuner U, Günther P, Lang CJG, Schmidt HHJ, Schrader C, Bandmann O, Czlonkowska A, Oertel WH, Hefter H (2008) Evaluation of the Unified Wilson’s Disease Rating Scale (UWDRS) in German patients with treated Wilson’s disease. Mov Disord 23(1):54–62

    Article  PubMed  Google Scholar 

  20. Hosseini SM, Hoeft F, Kesler SR (2012) GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLoS ONE 7(7):e40709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coppola P, Allanson J, Naci L, Adapa R, Finoia P, Williams GB, Pickard JD, Owen AM, Menon DK, Stamatakis EA (2022) The complexity of the stream of consciousness. Commun Biol 5(1):1173

    Article  PubMed  PubMed Central  Google Scholar 

  22. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  23. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bordes S, Werner C, Mathkour M, McCormack E, Iwanaga J, Loukas M, Lammle M, Dumont AS, Tubbs RS (2020) Arterial supply of the thalamus: a comprehensive review. World neurosurgery 137:310–318

    Article  PubMed  Google Scholar 

  25. Bosch-Bouju C, Hyland BI, Parr-Brownlie LC (2013) Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 7:163

    Article  PubMed  PubMed Central  Google Scholar 

  26. Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA (2008) The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain 131(Pt 9):2499–2509

    Article  PubMed  PubMed Central  Google Scholar 

  27. Silveri MC (2021) Contribution of the cerebellum and the basal ganglia to language production: speech, word fluency, and sentence construction-evidence from pathology. Cerebellum (London, England) 20(2):282–294

    Article  PubMed  Google Scholar 

  28. Lipat AL, Clark DJ, Hass CJ, Cruz-Almeida Y (2022) Gait subgroups among older adults with chronic pain differ in cerebellum and basal ganglia gray matter volumes. Exp Gerontol 163:111773

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barthélemy M (2004) Betweenness centrality in large complex networks. Eur Phys J B 38(2):163–168

    Article  Google Scholar 

  30. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  31. Saetia S, Yoshimura N, Koike Y (2021) Constructing brain connectivity model using causal network reconstruction approach. Front Neuroinform 15:619557

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brier MR, Thomas JB, Fagan AM, Hassenstab J, Holtzman DM, Benzinger TL, Morris JC, Ances BM (2014) Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol Aging 35(4):757–768

    Article  PubMed  Google Scholar 

  33. Kocevar G, Stamile C, Hannoun S, Cotton F, Vukusic S, Durand-Dubief F, Sappey-Marinier D (2016) Graph theory-based brain connectivity for automatic classification of multiple sclerosis clinical courses. Front Neurosci 10:478

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee HJ, Seo SA, Lee BI, Kim SE, Park KM (2020) Thalamic nuclei volumes and network in juvenile myoclonic epilepsy. Acta Neurol Scand 141(4):271–278

    Article  PubMed  Google Scholar 

  35. Anastasiades PG, Collins DP, Carter AG (2021) Mediodorsal and ventromedial thalamus engage distinct L1 circuits in the prefrontal cortex. Neuron 109(2):314-330.e4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Zonagxian Yao and Congming Xu for their assistance in data collecting.

Funding

This work was supported by 2022QNJJ04(Kunshan Traditional Chinese Medicine Hospital Youth Science and Technology Fund) and 2021sfyle01 (Anhui University of Chinese Medicine).

Author information

Authors and Affiliations

Authors

Contributions

Bing Zhang and Guang Yang contributed to the conception and organization of the research project. Bing Zhang contributed to the execution of the research project. Bing zhang, Rong Zhang, Chunyang Xu performed the statistical analysis and drafted the manuscript. Wenbin Hu and Xiaogang He critically reviewed the manuscript for important intellectual content. Wenbin Hu provided funding. All authors approved the final version of the manuscript before submission.

Corresponding author

Correspondence to Wenbin Hu.

Ethics declarations

Ethical approval

The study received approval from all authors. It was conducted in accordance with the Declaration of, Helsinki, and approved by the Ethics Committee of the Affiliated Hospital of the Institute of Neurology, Anhui University of Chinese Medicine (Ethics Approval No. 2021-Lun-Zi (13), translated from Chinese).

Informed consent

Participants were informed of the program and they put their signature on informed consent form.

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Co-first authorship: Bing Zhang and Guang Yang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yang, G., Xu, C. et al. The volume and structural covariance network of thalamic nuclei in patients with Wilson’s disease: an investigation of the association with neurological impairment. Neurol Sci 45, 2063–2073 (2024). https://doi.org/10.1007/s10072-023-07245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07245-2

Keywords

Navigation