Skip to main content

Advertisement

Log in

Hyperhidrosis as the initial symptom in FUS mutation-associated amyotrophic lateral sclerosis: a case report and comprehensive literature review

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is now recognized to involve autonomic dysfunction. The burden of autonomic dysfunction is an important factor in the quality of life and prognosis of ALS patients. This article presents the clinical characteristics of a young female ALS patient with a fused in sarcoma (FUS) gene mutation and notable hyperhidrosis.

Method

Detailed clinical characteristics of the patients were collected, and comprehensive examinations such as electrophysiological assessment, neuro-ultrasound, genetic testing, and relevant blood tests were conducted.

Result

A 24-year-old female experienced progressive weakness in both lower limbs for over 5 months, along with excessive sweating on both palms and feet. A positive skin iodine-starch test was observed. Electromyography revealed extensive neurogenic damage and prolonged sympathetic skin response (SSR) latency in both lower limbs. Full exon gene sequencing showed a heterozygous mutation c.1574C>T (p.Pro525Leu) in the FUS gene.

Conclusion

The pathogenesis of ALS remains unclear at present. This case underscores the presence of autonomic nervous symptoms in ALS associated with FUS mutation and highlights the importance of early diagnosis and timely treatment intervention to enhance patient prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lattante S, Rouleau GA, Kabashi E (2013) TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat 34:812–826

    Article  CAS  PubMed  Google Scholar 

  2. Chio A, Canosa A, Calvo A, Moglia C, Cicolin A, Mora G (2021) Developments in the assessment of non-motor disease progression in amyotrophic lateral sclerosis. Expert Rev Neurother 21:1419–1440

    Article  CAS  PubMed  Google Scholar 

  3. Baltadzhieva R, Gurevich T, Korczyn AD (2005) Autonomic impairment in amyotrophic lateral sclerosis. Curr Opin Neurol 18:487–493

    Article  PubMed  Google Scholar 

  4. Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito D, Suzuki N (2011) Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS. Neurology 77:1636–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ling SC, Dastidar SG, Tokunaga S, Ho WY, Lim K, Ilieva H, Parone PA, Tyan SH, Tse TM, Chang JC, Platoshyn O, Bui NB, Bui A, Vetto A, Sun S, McAlonis-Downes M, Han JS, Swing D, Kapeli K et al (2019) Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis. Elife 12:8:e40811

  8. Sasayama H, Shimamura M, Tokuda T, Azuma Y, Yoshida T, Mizuno T, Nakagawa M, Fujikake N, Nagai Y, Yamaguchi M (2012) Knockdown of the Drosophila fused in sarcoma (FUS) homologue causes deficient locomotive behavior and shortening of motoneuron terminal branches. PLoS One 7:e39483

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang JW, Brent JR, Tomlinson A, Shneider NA, McCabe BD (2011) The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J Clin Invest 121:4118–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kino Y, Washizu C, Kurosawa M, Yamada M, Miyazaki H, Akagi T, Hashikawa T, Doi H, Takumi T, Hicks GG, Hattori N, Shimogori T, Nukina N (2015) FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis. Acta Neuropathol Commun 3:24

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sharma A, Lyashchenko AK, Lu L, Nasrabady SE, Elmaleh M, Mendelsohn M, Nemes A, Tapia JC, Mentis GZ, Shneider NA (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun 7:10465

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chio A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41:118–130

    Article  CAS  PubMed  Google Scholar 

  13. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan J, Deng HX, Siddique N, Fecto F, Chen W, Yang Y, Liu E, Donkervoort S, Zheng JG, Shi Y, Ahmeti KB, Brooks B, Engel WK, Siddique T (2010) Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 75:807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071

    Article  PubMed  Google Scholar 

  16. McCluskey L, Vandriel S, Elman L, Van Deerlin VM, Powers J, Boller A, Wood EM, Woo J, McMillan CT, Rascovsky K, Grossman M (2014) ALS-Plus syndrome: non-pyramidal features in a large ALS cohort. J Neurol Sci 345:118–124

    Article  PubMed  PubMed Central  Google Scholar 

  17. Toepfer M, Folwaczny C, Klauser A, Riepl RL, Muller-Felber W, Pongratz D (1999) Gastrointestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:15–19

    Article  CAS  PubMed  Google Scholar 

  18. Kihira T, Yoshida S, Yoshimasu F, Wakayama I, Yase Y (1997) Involvement of Onuf’s nucleus in amyotrophic lateral sclerosis. J Neurol Sci 147:81–88

    Article  CAS  PubMed  Google Scholar 

  19. Kennedy PG, Duchen LW (1985) A quantitative study of intermediolateral column cells in motor neuron disease and the Shy-Drager syndrome. J Neurol, Neurosurg Psychiatry 48:1103–1106

    Article  CAS  PubMed  Google Scholar 

  20. Piccione EA, Sletten DM, Staff NP, Low PA (2015) Autonomic system and amyotrophic lateral sclerosis. Muscle Nerve 51:676–679

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weise D, Menze I, Metelmann MCF, Woost TB, Classen J, Otto Pelz J (2021) Multimodal assessment of autonomic dysfunction in amyotrophic lateral sclerosis. Eur J Neurol 29:715–723

    Article  PubMed  Google Scholar 

  22. Pavlovic S, Stevic Z, Milovanovic B, Milicic B, Rakocevic-Stojanovic V, Lavrnic D, Apostolski S (2009) Impairment of cardiac autonomic control in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:272–276

    Article  Google Scholar 

  23. Tanaka Y, Yamada M, Koumura A, Sakurai T, Hayashi Y, Kimura A, Hozumi I, Inuzuka T (2013) Cardiac sympathetic function in the patients with amyotrophic lateral sclerosis: analysis using cardiac [123I] MIBG scintigraphy. J Neurol 260:2380–2386

    Article  PubMed  Google Scholar 

  24. Rosenbohm A, Schmid B, Buckert D, Rottbauer W, Kassubek J, Ludolph AC, Bernhardt P (2017) Cardiac findings in amyotrophic lateral sclerosis: a magnetic resonance imaging study. Front Neurol 8:479

    Article  PubMed  PubMed Central  Google Scholar 

  25. Oey PL, Vos PE, Wieneke GH, Wokke JH, Blankestijn PJ, Karemaker JM (2002) Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis. Muscle Nerve 25:402–408

    Article  PubMed  Google Scholar 

  26. Karlsborg M, Andersen EB, Wiinberg N, Gredal O, Jorgensen L, Mehlsen J (2003) Sympathetic dysfunction of central origin in patients with ALS. Eur J Neurol 10:229–234

    Article  CAS  PubMed  Google Scholar 

  27. Santos-Bento M, de Carvalho M, Evangelista T, Sales Luis ML (2001) Sympathetic sudomotor function and amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2:105–108

    Article  CAS  PubMed  Google Scholar 

  28. Oliveira Santos M, Castro I, Castro J, Gromicho M, de Carvalho M (2021) Assessment of sympathetic sudomotor function in amyotrophic lateral sclerosis with electrochemical skin conductance. Clin Neurophysiol 132:2032–2036

    Article  PubMed  Google Scholar 

  29. Beck M, Giess R, Magnus T, Puls I, Reiners K, Toyka KV, Naumann M (2002) Progressive sudomotor dysfunction in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 73:68–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu F, Jin J, Qu Q, Dang J (2016) Sympathetic skin response in amyotrophic lateral sclerosis. J Clin Neurophysiol 33:60–65

    Article  PubMed  Google Scholar 

  31. Shimizu T, Hayashi H, Kato S, Hayashi M, Tanabe H, Oda M (1994) Circulatory collapse and sudden death in respirator-dependent amyotrophic lateral sclerosis. J Neurol Sci 124:45–55

    Article  CAS  PubMed  Google Scholar 

  32. Boentert M, Brenscheidt I, Glatz C, Young P (2015) Effects of non-invasive ventilation on objective sleep and nocturnal respiration in patients with amyotrophic lateral sclerosis. J Neurol 262:2073–2082

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XC was responsible for drafting and revision of the manuscript. WZ, QLH, and CD were responsible for collecting the data. HY was responsible for revision of the manuscript. JL and FX were responsible for concept and revision of the manuscript.

Corresponding authors

Correspondence to Jing Luo or Fei Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was approved by the Ethics Committee of The First Affiliated Hospital of Chongqing Medical University (2022-59).

Informed consent

Informed consent to participate and publication from the patient was also obtained.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Luo, J., Zheng, W. et al. Hyperhidrosis as the initial symptom in FUS mutation-associated amyotrophic lateral sclerosis: a case report and comprehensive literature review. Neurol Sci 45, 1523–1527 (2024). https://doi.org/10.1007/s10072-023-07141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07141-9

Keywords

Navigation