Skip to main content

Advertisement

Log in

Education reduces cognitive dysfunction in Alzheimer’s disease by changing regional cerebral perfusion: An in-vivo arterial spin labeling study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

Formal education and other cognitive challenges influence brain structure and improve function. It is believed that cognitive activities create a cognitive reserve (CR) that can slow the decline due to aging and neurodegenerative diseases. This study investigated alterations of regional cerebral blood flow (rCBF) associated with high and low CR in different stages of Alzheimer’s disease (AD) and examined whether rCBF alteration mediates the relationship between education and cognitive performance.

Methods

Patients with AD or amnestic mild cognitive impairment (aMCI) and healthy controls were divided into low cognitive reserve (LCR) and high cognitive reserve (HCR) subgroups according to median of education years (≤ 9 vs. > 9 years). The final study population included 89 AD patients (67 LCR, 22 HCR), 74 aMCI patients (44 LCR, 30 HCR), and 66 healthy controls (29 LCR, 37 HCR). All subjects were examined by arterial spin labeling magnetic resonance imaging and a neurocognitive test battery. rCBF was compared among groups by two-way analysis of variance. Mediation analyses were used to explore the relationships among education, rCBF, and cognitive test scores.

Results

There were significant interaction effects of disease state (AD, aMCI, HC) and education level (LCR, HCR) on CBF in right hippocampus, posterior cingulate cortex, and right inferior parietal cortex (R_IPC). Education regulated episodic memory score by influencing right hippocampal CBF in HC_HCR and aMCI_HCR subgroups.

Conclusion

Our results indicate that the protective effect of education against cognitive dysfunction in early-stage AD is mediated at least partially by altered CBF in right hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stern Y (2012) Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol 11(11):1006–1012. https://doi.org/10.1016/S1474-4422(12)70191-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stern Y, Barnes CA, Grady C, Jones RN, Raz N (2019) Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience. Neurobiol Aging 83:124–129. https://doi.org/10.1016/j.neurobiolaging.2019.03.022

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stern Y (2009) Cognitive reserve. Neuropsychologia 47(10):2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Perneczky R, Drzezga A, Diehl-Schmid J, Schmid G, Wohlschlager A, Kars S et al (2006) Schooling mediates brain reserve in Alzheimer's disease: findings of fluoro-deoxy-glucose-positron emission tomography. J Neurol Neurosurg Psychiatry 77(9):1060–1063. https://doi.org/10.1136/jnnp.2006.094714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Querbes O, Aubry F, Pariente J, Lotterie JA, Demonet JF, Duret V et al (2009) Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain 132(Pt 8):2036–2047. https://doi.org/10.1093/brain/awp105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adam S, Bonsang E, Grotz C, Perelman S (2013) Occupational activity and cognitive reserve: implications in terms of prevention of cognitive aging and Alzheimer's disease. Clin Interv Aging 8:377–390. https://doi.org/10.2147/CIA.S39921

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang J, Peng G, Liu P, Tan X, Luo B (2019) Regulating effect of CBF on memory in cognitively normal older adults with different ApoE genotype: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cogn Neurodyn 13(6):513–518. https://doi.org/10.1007/s11571-019-09536-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682. https://doi.org/10.1073/pnas.98.2.676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A 107(41):17757–17762. https://doi.org/10.1073/pnas.1010459107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Takahashi M, Tada T, Nakamura T, Koyama K, Momose T (2019) Efficacy and Limitations of rCBF-SPECT in the Diagnosis of Alzheimer's Disease With Amyloid-PET. Am J Alzheimers Dis Other Demen 34(5):314–321. https://doi.org/10.1177/1533317519841192

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yoshii F, Kawaguchi C, Kohara S, Shimizu M, Onaka H, Ryo M et al (2018) Characteristic deterioration of ADAS-Jcog subscale scores and correlations with regional cerebral blood flow reductions in Alzheimer's disease. Neurol Sci 39(5):909–918. https://doi.org/10.1007/s10072-018-3277-6

    Article  PubMed  Google Scholar 

  12. Marchitelli R, Aiello M, Cachia A, Quarantelli M, Cavaliere C, Postiglione A et al (2018) Simultaneous resting-state FDG-PET/fMRI in Alzheimer Disease: Relationship between glucose metabolism and intrinsic activity. Neuroimage 176:246–258. https://doi.org/10.1016/j.neuroimage.2018.04.048

    Article  CAS  PubMed  Google Scholar 

  13. Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X (2016) Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications. Radiology 281(2):337–356. https://doi.org/10.1148/radiol.2016150789

    Article  PubMed  Google Scholar 

  14. Wolk DA, Detre JA (2012) Arterial spin labeling MRI: an emerging biomarker for Alzheimer's disease and other neurodegenerative conditions. Curr Opin Neurol 25(4):421–428. https://doi.org/10.1097/WCO.0b013e328354ff0a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Musiek ES, Chen Y, Korczykowski M, Saboury B, Martinez PM, Reddin JS et al (2012) Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement 8(1):51–59. https://doi.org/10.1016/j.jalz.2011.06.003

    Article  PubMed  Google Scholar 

  16. Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009) Mild cognitive impairment and alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250(3):856–866. https://doi.org/10.1148/radiol.2503080751

    Article  PubMed  PubMed Central  Google Scholar 

  17. Duan W, Zhou GD, Balachandrasekaran A, Bhumkar AB, Boraste PB, Becker JT et al (2021) Cerebral Blood Flow Predicts Conversion of Mild Cognitive Impairment into Alzheimer's Disease and Cognitive Decline: An Arterial Spin Labeling Follow-up Study. J Alzheimers Dis 82(1):293–305. https://doi.org/10.3233/JAD-210199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zlatar ZZ, Wierenga CE, Bangen KJ, Liu TT, Jak AJ (2014) Increased hippocampal blood flow in sedentary older adults at genetic risk for Alzheimer's disease. J Alzheimers Dis 41(3):809–817. https://doi.org/10.3233/JAD-132252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bangen KJ, Restom K, Liu TT, Wierenga CE, Jak AJ, Salmon DP et al (2012) Assessment of Alzheimer's disease risk with functional magnetic resonance imaging: an arterial spin labeling study. J Alzheimers Dis 31(Suppl 3):S59–S74. https://doi.org/10.3233/JAD-2012-120292

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grothe MJ, Teipel SJ (2016) Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks. Hum Brain Mapp 37(1):35–53. https://doi.org/10.1002/hbm.23018

    Article  PubMed  Google Scholar 

  21. Zhu J, Zhuo C, Qin W, Xu Y, Xu L, Liu X et al (2015) Altered resting-state cerebral blood flow and its connectivity in schizophrenia. J Psychiatr Res 63:28–35. https://doi.org/10.1016/j.jpsychires.2015.03.002

    Article  PubMed  Google Scholar 

  22. Melie-Garcia L, Sanabria-Diaz G, Sanchez-Catasus C (2013) Studying the topological organization of the cerebral blood flow fluctuations in resting state. Neuroimage 64:173–184. https://doi.org/10.1016/j.neuroimage.2012.08.082

    Article  PubMed  Google Scholar 

  23. Franzmeier N, Caballero MÁA, Taylor ANW, Simon-Vermot L, Buerger K, Ertl-Wagner B, Mueller C, Catak C, Janowitz D, Baykara E, Gesierich B, Duering M, Ewers M, Alzheimer’s Disease Neuroimaging Initiative (2017) Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment. Brain imaging and behavior 11(2):368–382. https://doi.org/10.1007/s11682-016-9599-1

    Article  CAS  PubMed  Google Scholar 

  24. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34(7):939–944. https://doi.org/10.1212/wnl.34.7.939

    Article  CAS  PubMed  Google Scholar 

  25. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  26. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7(3):270–279. https://doi.org/10.1016/j.jalz.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  27. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ et al (2010) Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74(3):201–209. https://doi.org/10.1212/WNL.0b013e3181cb3e25

    Article  PubMed  PubMed Central  Google Scholar 

  28. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308. https://doi.org/10.1001/archneur.56.3.303

    Article  CAS  PubMed  Google Scholar 

  29. Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M et al (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR Biomed 23(3):286–293. https://doi.org/10.1002/nbm.1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aslan S, Lu H (2010) On the sensitivity of ASL MRI in detecting regional differences in cerebral blood flow. Magn Reson Imaging 28(7):928–935. https://doi.org/10.1016/j.mri.2010.03.037

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kemppainen NM, Aalto S, Karrasch M, Nagren K, Savisto N, Oikonen V et al (2008) Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer's disease. Ann Neurol 63(1):112–118. https://doi.org/10.1002/ana.21212

    Article  PubMed  Google Scholar 

  32. Mungas D, Gavett B, Fletcher E, Farias ST, DeCarli C, Reed B (2018) Education amplifies brain atrophy effect on cognitive decline: implications for cognitive reserve. Neurobiol Aging 68:142–150. https://doi.org/10.1016/j.neurobiolaging.2018.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rane S, Ally BA, Hussey E, Wilson T, Thornton-Wells T, Gore JC, Donahue MJ (2013) Inverse correspondence between hippocampal perfusion and verbal memory performance in older adults. Hippocampus 23(3):213–220. https://doi.org/10.1002/hipo.22080

    Article  PubMed  Google Scholar 

  34. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8(3):448–460

    Article  PubMed  Google Scholar 

  35. Weiler M, Casseb RF, de Campos BM, de Ligo Teixeira CV, Carletti-Cassani AFMK, Vicentini JE, Magalhães TNC, de Almeira DQ, Talib LL, Forlenza OV, Balthazar MLF, Castellano G (2018) Cognitive Reserve Relates to Functional Network Efficiency in Alzheimer's Disease. Front Aging Neurosci 10:255. https://doi.org/10.3389/fnagi.2018.00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bangen KJ, Restom K, Liu TT, Wierenga CE, Jak AJ, Salmon DP, Bondi MW (2012) Assessment of Alzheimer's disease risk with functional magnetic resonance imaging: an arterial spin labeling study. J Alzheimer's Dis 31(Suppl 3):S59–S74. https://doi.org/10.3233/JAD-2012-120292

    Article  Google Scholar 

  37. Fleisher AS, Podraza KM, Bangen KJ, Taylor C, Sherzai A, Sidhar K, Liu TT, Dale AM, Buxton RB (2009) Cerebral perfusion and oxygenation differences in Alzheimer's disease risk. Neurobiology of aging 30(11):1737–1748. https://doi.org/10.1016/j.neurobiolaging.2008.01.012

    Article  CAS  PubMed  Google Scholar 

  38. Sabariego M, Tabrizi NS, Marshall GJ, McLagan AN, Jawad S, Hales JB (2021) In the temporal organization of episodic memory, the hippocampus supports the experience of elapsed time. Hippocampus 31(1):46–55. https://doi.org/10.1002/hipo.23261

    Article  PubMed  Google Scholar 

  39. Raynal E, Schnider A, Manuel AL (2020) Early signal from the hippocampus for memory encoding. Hippocampus 30(2):114–120. https://doi.org/10.1002/hipo.23137

    Article  PubMed  Google Scholar 

  40. Raichle ME (2015) The brain's default mode network. Annu Rev Neurosci 38:433–447. https://doi.org/10.1146/annurev-neuro-071013-014030

    Article  CAS  PubMed  Google Scholar 

  41. Palmqvist S, Scholl M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H et al (2017) Earliest accumulation of beta-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 8(1):1214. https://doi.org/10.1038/s41467-017-01150-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23(Suppl 1):S220–S233. https://doi.org/10.1016/j.neuroimage.2004.07.013

    Article  PubMed  Google Scholar 

  43. Zheng W, Cui B, Han Y, Song H, Li K, He Y et al (2019) Disrupted Regional Cerebral Blood Flow, Functional Activity and Connectivity in Alzheimer's Disease: A Combined ASL Perfusion and Resting State fMRI Study. Front Neurosci 13:738. https://doi.org/10.3389/fnins.2019.00738

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu X, Li R, Fleisher AS, Reiman EM, Guan X, Zhang Y et al (2011) Altered default mode network connectivity in Alzheimer's disease--a resting functional MRI and Bayesian network study. Hum Brain Mapp 32(11):1868–1881. https://doi.org/10.1002/hbm.21153

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fiehler K, Bannert MM, Bischoff M, Blecker C, Stark R, Vaitl D et al (2011) Working memory maintenance of grasp-target information in the human posterior parietal cortex. Neuroimage 54(3):2401–2411. https://doi.org/10.1016/j.neuroimage.2010.09.080

    Article  PubMed  Google Scholar 

  46. Singh-Curry V, Husain M (2009) The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia 47(6):1434–1448. https://doi.org/10.1016/j.neuropsychologia.2008.11.033

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Fund number: 81901726, 81771817, 82071905). We would like to thank the many collaborators for their work in setting up the study and implementing the protocol. We would like to thank our patients for their role in the research design.

Author information

Authors and Affiliations

Authors

Contributions

Wanqiu Zhu: Data collection, Methodology, Software, Formal analysis, Validation, Writing - original draft. Ziwen Gao: Data collection, Data curation, Visualization, Investigation, Software. Hui Li: Data collection. Ziang Hang: Data collection. Xiaohu Li: Methodology, Software. Haibao Wang: Methodology, Software. Xingqi Wu: Data collection, Data curation, Visualization, Investigation. Yanghua Tian: Data curation, Visualization, Investigation. Shanshan Zhou: Data curation, Visualization, Investigation. Xiaoshu Li: Methodology, Software, Formal analysis, Funding acquisition, Writing - review & editing. Yongqiang Yu: Conceptualization, Formal analysis, Funding acquisition, Project administration, Resources, Supervision, Writing - review & editing.

Corresponding authors

Correspondence to Xiaoshu Li or Yongqiang Yu.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Medical Research Ethics Committee of the First Affiliated Hospital of Anhui Medical University, China, according to the Declaration of Helsinki. Informed consent was provided by all subjects.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Gao, Z., Li, H. et al. Education reduces cognitive dysfunction in Alzheimer’s disease by changing regional cerebral perfusion: An in-vivo arterial spin labeling study. Neurol Sci 44, 2349–2361 (2023). https://doi.org/10.1007/s10072-023-06696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06696-x

Keywords

Navigation