Skip to main content

Advertisement

Log in

The regulatory function of lncRNA and constructed network in epilepsy

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Epilepsy is a neurological disease characterized by neural network dysfunction. Although most reports indicate that the pathological process of epilepsy is related to inflammation, synaptic plasticity, cell apoptosis, and ion channel dysfunction, the underlying molecular mechanisms of epilepsy are not fully understood.

Methods

This review summarizes the latest literature on the roles and characteristics of long noncoding RNAs (lncRNAs) in the pathogenesis of epilepsy.

Results

lncRNAs are a class of long transcripts without protein-coding functions that perform important regulatory functions in various biological processes. lncRNAs are involved in the regulation of the pathological process of epilepsy and are abnormally expressed in both patients and animal models. This review provides an overview of research progress in epilepsy, the multifunctional features of lncRNAs, the lncRNA expression pattern related to epileptogenesis and status epilepticus, and the potential mechanisms for the two interactions contributing to epileptogenesis and progression.

Conclusion

lncRNAs can serve as new diagnostic markers and therapeutic targets for epilepsy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armstrong C, Marsh ED (2021) Electrophysiological biomarkers in genetic epilepsies. Neurotherapeutics 18(3):1458–1467. https://doi.org/10.1007/s13311-021-01132-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chuang S-H, Reddy DS (2018) Genetic and molecular regulation of extrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy. J Pharmacol Exp Ther 364(2):180–197. https://doi.org/10.1124/jpet.117.244673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu J, Wang G, Chen Z, Wan L, Zhou J, Cai J et al (2022) Deficit of PKHD1L1 in the dentate gyrus increases seizure susceptibility in mice. Hum Mol Genet. 32:506–519. https://doi.org/10.1093/hmg/ddac220

    Article  Google Scholar 

  4. Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S et al (2015) A definition and classification of status epilepticus—report of the ILAE task force on classification of status epilepticus. Epilepsia 56(10):1515–1523. https://doi.org/10.1111/epi.13121

    Article  PubMed  Google Scholar 

  5. Collaborators GE (2019) Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(4):357–375. https://doi.org/10.1016/s1474-4422(18)30454-x

    Article  Google Scholar 

  6. Geng J-F, Liu X, Zhao H-B, Fan W-F, Geng J-J, Liu X-Z (2018) LncRNA UCA1 inhibits epilepsy and seizure-induced brain injury by regulating miR-495/Nrf2-ARE signal pathway. Int J Biochem Cell Biol 99:133–139. https://doi.org/10.1016/j.biocel.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  7. Grillo E (2014) The circular dilemma of seizure-induced brain injury. Brain 137(Pt 11):e305. https://doi.org/10.1093/brain/awu185

    Article  PubMed  Google Scholar 

  8. Huberfeld G, Blauwblomme T, Miles R (2015) Hippocampus and epilepsy: findings from human tissues. Rev Neurol 171(3):236–251. https://doi.org/10.1016/j.neurol.2015.01.563

    Article  CAS  PubMed  Google Scholar 

  9. Pandey A, Singh SK, Udmale SS, Shukla KK (2022) Epileptic seizure classification using battle royale search and rescue optimization based deep LSTM. IEEE J Biomed Health Inform 26:5494–5505. https://doi.org/10.1109/jbhi.2022.3203454

    Article  PubMed  Google Scholar 

  10. Yu S, Gu Y, Wang T, Mu L, Wang H, Yan S et al (2021) Study of neuronal apoptosis ceRNA network in hippocampal sclerosis of human temporal lobe epilepsy by RNA-Seq. Front Neurosc 15:770627. https://doi.org/10.3389/fnins.2021.770627

    Article  Google Scholar 

  11. Li X, Yang C, Shi Y, Guan L, Li H, Li S et al (2021) Abnormal neuronal damage and inflammation in the hippocampus of kainic acid-induced epilepsy mice. Cell Biochem Funct 39(6):791–801. https://doi.org/10.1002/cbf.3651

    Article  CAS  PubMed  Google Scholar 

  12. Pitkänen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1(3):173–181. https://doi.org/10.1016/s1474-4422(02)00073-x

    Article  PubMed  Google Scholar 

  13. Wang Z, Zhou L, An D, Xu W, Wu C, Sha S et al (2019) TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice. Cell Death Dis 10(6):386. https://doi.org/10.1038/s41419-019-1612-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elia M, Klepper J, Leiendecker B, Hartmann H (2017) Ketogenic diets in the treatment of epilepsy. Curr Pharm Des 23(37):5691–5701. https://doi.org/10.2174/1381612823666170809101517

    Article  CAS  PubMed  Google Scholar 

  15. Hakeem H, Feng W, Chen Z, Choong J, Brodie MJ, Fong S-L et al (2022) Development and validation of a deep learning model for predicting treatment response in patients with newly diagnosed epilepsy. JAMA Neurol. 79:986. https://doi.org/10.1001/jamaneurol.2022.2514

    Article  PubMed  Google Scholar 

  16. Yuskaitis CJ, Modasia JB, Schrötter S, Rossitto L-A, Groff KJ, Morici C et al (2022) DEPDC5-dependent mTORC1 signaling mechanisms are critical for the anti-seizure effects of acute fasting. Cell Rep 40(9):111278. https://doi.org/10.1016/j.celrep.2022.111278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng H, Gui Q, Zhu W, Wu G, Dong X, Shen M et al (2020) Long-noncoding RNA Peg13 alleviates epilepsy progression in mice via the miR-490-3p/Psmd11 axis to inactivate the Wnt/β-catenin pathway. Am J Transl Res 12(12):7968–7981

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ellis CA, Petrovski S, Berkovic SF (2020) Epilepsy genetics: clinical impacts and biological insights. Lancet Neurol 19(1):93–100. https://doi.org/10.1016/s1474-4422(19)30269-8

    Article  CAS  PubMed  Google Scholar 

  19. Johannesen KM, Nikanorova N, Marjanovic D, Pavbro A, Larsen LHG, Rubboli G et al (2020) Utility of genetic testing for therapeutic decision-making in adults with epilepsy. Epilepsia 61(6):1234–1239. https://doi.org/10.1111/epi.16533

    Article  PubMed  Google Scholar 

  20. Lindy AS, Stosser MB, Butler E, Downtain-Pickersgill C, Shanmugham A, Retterer K et al (2018) Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia 59(5):1062–1071. https://doi.org/10.1111/epi.14074

    Article  CAS  PubMed  Google Scholar 

  21. Pagni S, Mills JD, Frankish A, Mudge JM, Sisodiya SM (2021) Non-coding regulatory elements: potential roles in disease and the case of epilepsy. Neuropathol Appl Neurobiol. 48. https://doi.org/10.1111/nan.12775

  22. Hoon MJLD, Bonetti A, Plessy C, Ando Y, Hon C-C, Ishizu Y et al (2022) Deep sequencing of short capped RNAs reveals novel families of noncoding RNAs. Genome Res. 32(9):1727–1735. https://doi.org/10.1101/gr.276647.122

    Article  PubMed  PubMed Central  Google Scholar 

  23. Redis RS, Calin GA (2017) SnapShot: non-coding RNAs and metabolism. Cell metab 25(1):220–220.e221. https://doi.org/10.1016/j.cmet.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  24. Villa C, Lavitrano M, Combi R (2019) Long non-coding RNAs and related molecular pathways in the pathogenesis of epilepsy. Int J Mol Sci 20(19):4898. https://doi.org/10.3390/ijms20194898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220(2). https://doi.org/10.1083/jcb.202009045

  26. Deveson IW, Brunck ME, Blackburn J, Tseng E, Hon T, Clark TA et al (2018) Universal alternative splicing of noncoding exons. Cell Syst 6(2):245–255.e245. https://doi.org/10.1016/j.cels.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  27. Eaton JD, Francis L, Davidson L, West S (2020) A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes. Genes Dev 34(1-2):132–145. https://doi.org/10.1101/gad.332833.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hewson C, Capraro D, Burdach J, Whitaker N, Morris KV (2016) Extracellular vesicle associated long non-coding RNAs functionally enhance cell viability. Non-coding RNA Res 1(1):3–11. https://doi.org/10.1016/j.ncrna.2016.06.001

    Article  Google Scholar 

  29. Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429(6991):571–574. https://doi.org/10.1038/nature02538

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Z, Yan Y, Guo Q, Wang L, Han X, Liu S (2021) Genetic interaction of H19 and TGFBR1 polymorphisms with risk of epilepsy in a Chinese population. Pharmgenomics Pers Med 14:77–86. https://doi.org/10.2147/pgpm.S279664

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhou Y, Shao Y, Hu W, Zhang J, Shi Y, Kong X et al (2022) A novel long noncoding RNA SP100-AS1 induces radioresistance of colorectal cancer via sponging miR-622 and stabilizing ATG3. Cell Death Differ. 30(1):111–124. https://doi.org/10.1038/s41418-022-01049-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee DY, Moon J, Lee S-T, Jung K-H, Park D-K, Yoo J-S et al (2015) Dysregulation of long non-coding RNAs in mouse models of localization-related epilepsy. Biochem Biophys Res Commun 462(4):433–440. https://doi.org/10.1016/j.bbrc.2015.04.149

    Article  CAS  PubMed  Google Scholar 

  33. Shao Y, Chen Y (2017) Pathophysiology and clinical utility of non-coding RNAs in epilepsy. Front Mole Neurosci 10:249. https://doi.org/10.3389/fnmol.2017.00249

    Article  CAS  Google Scholar 

  34. Cai X, Long L, Zeng C, Ni G, Meng Y, Guo Q et al (2020) LncRNA ILF3-AS1 mediated the occurrence of epilepsy through suppressing hippocampal miR-212 expression. Aging 12(9):8413–8422. https://doi.org/10.18632/aging.103148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fabisiak T, Patel M (2022) Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front Cell Dev Biol 10:976953. https://doi.org/10.3389/fcell.2022.976953

    Article  PubMed  PubMed Central  Google Scholar 

  36. Singh D, Assaraf YG, Gacche RN (2022) Long non-coding RNA mediated drug resistance in breast cancer. Drug resist updat 63:100851. https://doi.org/10.1016/j.drup.2022.100851

    Article  CAS  PubMed  Google Scholar 

  37. Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393(10172):689–701. https://doi.org/10.1016/s0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  38. Xiao W, Cao Y, Long H, Luo Z, Li S, Deng N et al (2018) Genome-wide DNA methylation patterns analysis of noncoding RNAs in temporal lobe epilepsy patients. Mol Neurobiol 55(1):793–803. https://doi.org/10.1007/s12035-016-0353-x

    Article  CAS  PubMed  Google Scholar 

  39. Herman AB, Tsitsipatis D, Gorospe M (2022) Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell 82(12):2252–2266. https://doi.org/10.1016/j.molcel.2022.05.027

    Article  CAS  PubMed  Google Scholar 

  40. Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO rep 13(11):971–983. https://doi.org/10.1038/embor.2012.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luo ZH, Alsharafi Walid A, Xie Y, Long H, Xiao W, Xu L, Fu Y, Feng L, Xiao B et al (2019) Construction and analysis of a dysregulated lncRNA-associated ceRNA network in a rat model of temporal lobe epilepsy. Seizure 69:105–114. https://doi.org/10.1016/j.seizure.2019.04.010

    Article  PubMed  Google Scholar 

  42. Jang Y, Moon J, Lee S-T, Jun J-S, Kim T-J, Lim J-A et al (2018) Dysregulated long non-coding RNAs in the temporal lobe epilepsy mouse model. Seizure 58:110–119. https://doi.org/10.1016/j.seizure.2018.04.010

    Article  PubMed  Google Scholar 

  43. Gan J, Huang L, Qu Y, Luo R, Cai Q, Zhao F et al (2020) Expression and functional analysis of lncRNAs in the hippocampus of immature rats with status epilepticus. J Cell Mol Med 24(1):149–159. https://doi.org/10.1111/jcmm.14676

    Article  CAS  PubMed  Google Scholar 

  44. Jesus-Ribeiro J, Pires LM, Melo JD, Ribeiro IP, Rebelo O, Sales F et al (2020) Genomic and epigenetic advances in focal cortical dysplasia types I and II: a scoping review. Front Neurosci 14:580357. https://doi.org/10.3389/fnins.2020.580357

    Article  PubMed  Google Scholar 

  45. Han C-L, Ge M, Liu Y-P, Zhao X-M, Wang K-L, Chen N et al (2018) Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death Dis 9(6):617. https://doi.org/10.1038/s41419-018-0496-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han C-L, Ge M, Liu Y-P, Zhao X-M, Wang K-L, Chen N et al (2018) LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy. J neuroinflammation 15(1):103. https://doi.org/10.1186/s12974-018-1139-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wan Y, Yang Z-Q (2020) LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy. Cell cycle 19(4):419–431. https://doi.org/10.1080/15384101.2020.1711578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barry G, Briggs JA, Hwang DW, Nayler SP, Fortuna PRJ, Jonkhout N et al (2017) The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Sci Rep 7:40127. https://doi.org/10.1038/srep40127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu Q, Zhao M-W, Yang P (2020) LncRNA UCA1 Suppresses the inflammation via modulating miR-203-mediated regulation of MEF2C/NF-κB signaling pathway in epilepsy. Neurochem Res 45(4):783–795. https://doi.org/10.1007/s11064-019-02952-9

    Article  CAS  PubMed  Google Scholar 

  50. Wang H, Yao G, Li L, Ma Z, Chen J, Chen W (2020) LncRNA-UCA1 inhibits the astrocyte activation in the temporal lobe epilepsy via regulating the JAK/STAT signaling pathway. J cell biochem 121(10):4261–4270. https://doi.org/10.1002/jcb.29634

    Article  CAS  PubMed  Google Scholar 

  51. Zhu H, Xu H, Ma H, Luo L, Yang L, Chen F et al (2020) LncRNA CASC2 inhibits astrocytic activation and adenosine metabolism by regulating PTEN in pentylenetetrazol-induced epilepsy model. J Chem Neuroanat 105:101749. https://doi.org/10.1016/j.jchemneu.2020.101749

    Article  CAS  PubMed  Google Scholar 

  52. Zhao T, Ding Y, Li M, Zhou C, Lin W (2019) Silencing lncRNA PVT1 inhibits activation of astrocytes and increases BDNF expression in hippocampus tissues of rats with epilepsy by downregulating the Wnt signaling pathway. J Cell Physiol. 234(9):16054–16067. https://doi.org/10.1002/jcp.28264

    Article  CAS  PubMed  Google Scholar 

  53. Feng H, Gui Q, Wu G, Zhu W, Dong X, Shen M et al (2021) Long noncoding RNA Nespas inhibits apoptosis of epileptiform hippocampal neurons by inhibiting the PI3K/Akt/mTOR pathway. Exp Cell Res 398(1):112384. https://doi.org/10.1016/j.yexcr.2020.112384

    Article  CAS  PubMed  Google Scholar 

  54. Hu C, Wang S, Liu L (2021) Long non-coding RNA small nucleolar RNA host gene 1 alleviates the progression of epilepsy by regulating the miR-181a/BCL-2 axis in vitro. Life Sci 267:118935. https://doi.org/10.1016/j.lfs.2020.118935

    Article  CAS  PubMed  Google Scholar 

  55. Xie Y, Wang M, Shao Y, Chen Y (2022) LncRNA H19 regulates P-glycoprotein expression through the NF-κB signaling pathway in the model of status epilepticus. Neurochem Res. https://doi.org/10.1007/s11064-022-03803-w

  56. Xie Y, Wang M, Deng X, Chen Y (2022) Long non-coding RNA H19 alleviates hippocampal damage in convulsive status epilepticus rats through the nuclear factor-kappaB signaling pathway. Bioengineered 13(5):12783–12793. https://doi.org/10.1080/21655979.2022.2074760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu Q, Yi X (2018) Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. J Molecular Neurosci 65(2):234–245. https://doi.org/10.1007/s12031-018-1093-3

    Article  CAS  Google Scholar 

  58. Zhao M-W, Qiu W-J, Yang P (2020) SP1 activated-lncRNA SNHG1 mediates the development of epilepsy via miR-154-5p/TLR5 axis. Epilepsy Res 168:106476. https://doi.org/10.1016/j.eplepsyres.2020.106476

    Article  CAS  PubMed  Google Scholar 

  59. Li X, Giri V, Cui Y, Yin M, Xian Z, Li J (2019) LncRNA FTX inhibits hippocampal neuron apoptosis by regulating miR-21-5p/SOX7 axis in a rat model of temporal lobe epilepsy. Biochem Biophys Res Commun 512(1):79–86. https://doi.org/10.1016/j.bbrc.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Na Z, Cui Y, Wei C, Wang S (2022) LncRNA ZFAS1 regulates the hippocampal neurons injury in epilepsy through the miR-15a-5p/OXSR1/NF-κB pathway. Metab Brain Dis 37(7):2277–2290. https://doi.org/10.1007/s11011-022-01013-5

    Article  CAS  PubMed  Google Scholar 

  61. Hu F, Shao L, Zhang J, Zhang H, Wen A, Zhang P (2020) Knockdown of ZFAS1 inhibits hippocampal neurons apoptosis and autophagy by activating the PI3K/AKT pathway via up-regulating miR-421 in epilepsy. Neurochem Res 45(10):2433–2441. https://doi.org/10.1007/s11064-020-03103-1

    Article  CAS  PubMed  Google Scholar 

  62. Wang B, Suen CW, Ma H, Wang Y, Kong L, Qin D et al (2020) The roles of H19 in regulating inflammation and aging. Front immunol 11:579687. https://doi.org/10.3389/fimmu.2020.579687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H (2020) An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep 47(8):6357–6374. https://doi.org/10.1007/s11033-020-05695-x

    Article  CAS  PubMed  Google Scholar 

  64. Iempridee T (2017) Long non-coding RNA H19 enhances cell proliferation and anchorage-independent growth of cervical cancer cell lines. Exp Biol Med 242(2):184–193. https://doi.org/10.1177/1535370216670542

    Article  CAS  Google Scholar 

  65. Ren J, Fu J, Ma T, Yan B, Gao R, An Z et al (2018) LncRNA H19-elevated LIN28B promotes lung cancer progression through sequestering miR-196b. Cell Cycle 17(11):1372–1380. https://doi.org/10.1080/15384101.2018.1482137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han C-L, Liu Y-P, Zhao X-M, Wang K-L, Chen N, Hu W et al (2017) Whole-transcriptome screening reveals the regulatory targets and functions of long non-coding RNA H19 in epileptic rats. Biochem Biophys Res Commun 489(2):262–269. https://doi.org/10.1016/j.bbrc.2017.05.161

    Article  CAS  PubMed  Google Scholar 

  67. Steinhäuser C, Seifert G (2012) Astrocyte dysfunction in epilepsy. Jasper’s basic mechanisms of the epilepsies

    Book  Google Scholar 

  68. Luo Y, Hu Q, Zhang Q, Hong S, Tang X, Cheng L et al (2015) Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res 1627:154–164. https://doi.org/10.1016/j.brainres.2015.09.027

    Article  CAS  PubMed  Google Scholar 

  69. Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer initiation, progression and metastasis—a proposed unifying theory. Mol cancer 14:184. https://doi.org/10.1186/s12943-015-0458-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang F, Wu L, Qian J, Qu B, Xia S, La T et al (2016) Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmunity 75:96–104. https://doi.org/10.1016/j.jaut.2016.07.012

    Article  CAS  Google Scholar 

  71. Zhang P, Cao L, Zhou R, Yang X, Wu M (2019) The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun 10(1):1495. https://doi.org/10.1038/s41467-019-09482-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sha L, Wu X, Yao Y, Wen B, Feng J, Sha Z et al (2014) Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol 49(2):633–644. https://doi.org/10.1007/s12035-013-8545-0

    Article  CAS  PubMed  Google Scholar 

  73. Perkowski JJ, Murphy GG (2011) Deletion of the mouse homolog of KCNAB2, a gene linked to monosomy 1p36, results in associative memory impairments and amygdala hyperexcitability. J Neurosci 31(1):46–54. https://doi.org/10.1523/jneurosci.2634-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pruunsild P, Timmusk T (2012) Subcellular localization and transcription regulatory potency of KCNIP/Calsenilin/DREAM/KChIP proteins in cultured primary cortical neurons do not provide support for their role in CRE-dependent gene expression. J Neurochem 123(1):29–43. https://doi.org/10.1111/j.1471-4159.2012.07796.x

    Article  CAS  PubMed  Google Scholar 

  75. Xue M, Chen W, Xiang A, Wang R, Chen H, Pan J et al (2017) Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer 16(1):143. https://doi.org/10.1186/s12943-017-0714-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang H-K, Yan H, Wang K, Wang J (2017) Dynamic regulation effect of long non-coding RNA-UCA1 on NF-kB in hippocampus of epilepsy rats. Eur Rev Med Pharmacol Sci 21(13):3113–3119

    PubMed  Google Scholar 

  77. Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L (2019) MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 76(16):3207–3228. https://doi.org/10.1007/s00018-019-03180-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Han C-L, Liu Y-P, Guo C-J, Du T-T, Jiang Y, Wang K-L et al (2020) The lncRNA H19 binding to let-7b promotes hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy. Cell Prolif 53(8):e12856. https://doi.org/10.1111/cpr.12856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang X, Hamblin MH, Yin K-J (2017) The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Bio 14(12):1705–1714. https://doi.org/10.1080/15476286.2017.1358347

    Article  Google Scholar 

  80. Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A (2013) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain res bull 97:69–80. https://doi.org/10.1016/j.brainresbull.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  81. Noebels J (2015) Pathway-driven discovery of epilepsy genes. Nature Neurosci 18(3):344–350. https://doi.org/10.1038/nn.3933

    Article  CAS  PubMed  Google Scholar 

  82. Wang J, Lin Z-J, Liu L, Xu H-Q, Shi Y-W, Yi Y-H et al (2017) Epilepsy-associated genes. Seizure 44:11–20. https://doi.org/10.1016/j.seizure.2016.11.030

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Nature and Science Foundation of China (82071448, SL Liang) and Beijing Nature & Science Foundation of China (7202045, SL Liang). These funds were not involved in the study design, data collection and analysis, interpretation of data, or writing of the report.

Author information

Authors and Affiliations

Authors

Contributions

Shuli Liang: conceptualization, writing—reviewing and editing, and funding acquisition. Suhui Kuang, Jiaqi Wang, and Zhirong Wei: writing—original draft preparation, literature search, and analysis. Feng Zhai: writing—reviewing and editing. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Shuli Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, S., Wang, J., Wei, Z. et al. The regulatory function of lncRNA and constructed network in epilepsy. Neurol Sci 44, 1543–1554 (2023). https://doi.org/10.1007/s10072-023-06648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06648-5

Keywords

Navigation