Skip to main content

Advertisement

Log in

The Semantic Association Test (SAT): normative data from healthy Italian participants and a validation study in aphasic patients

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract  

The Semantic Association Test assesses several aspects of Semantic Memory (Categorical, Encyclopedic, Functional, and Visual Encyclopedic associations: CAs, EAs, FAs and VEAs), using a picture-to-picture matching paradigm. Normative data were collected from a group of 329 healthy participants (178 females) with mean 51.1 (range 20–90) years of age and mean 11.89 (range 5–19) years of education. Raw scores of healthy participants, pre-calculated correction factors for age and educational level, and Equivalent Scores are provided. The SAT was validated in a sample of 139 left brain–damaged persons with aphasia (PWA). Both groups (healthy participants and PWA) scored worse in the CA and EA conditions. The performance of the PWA group was overall defective, and global aphasics scored worse than persons with other types of aphasia. However, several PWA did not show impairments in the SAT. Dissociations were also found, with individual PWA showing defective performance confined to a single category. These results present the SAT as a tool that is useful to detect impairments of visual Semantic Memory, providing normative data from healthy participants and a validation study in PWA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References 

  1. Balota DA, Coane JH (2008) Semantic memory. In: Byrne JH, Eichenbaum H, Menzel R et al (eds) Handbook of learning and memory: a comprehensive reference. Elsevier, Amsterdam, pp 512–531

    Google Scholar 

  2. Lambon Ralph MA, Sage K, Jones RW, Mayberry EJ (2010) Coherent concepts are computed in the anterior temporal lobes. Proc Nat Acad Sci USA 107:2717–2722 (https://www.pnas.org/doi/full/10.1073/pnas.0907307107)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barsalou LW (2003) Abstraction in perceptual symbol systems. Philos Trans R Soc Lond B Biol Sci 358:1177–1187. https://doi.org/10.1098/RSTB.2003.1319

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shallice T (1988) From neuropsychology to mental structure. Cambridge University Press

    Book  Google Scholar 

  5. Shallice T (1987) Impairments of semantic processing: multiple dissociations. In: Coltheart M, Sartori G, Job R (eds) The cognitive neuropsychology of language. Lawrence Erlbaum, pp 111–127

    Google Scholar 

  6. Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8:976–987. https://doi.org/10.1038/NRN2277

    Article  CAS  PubMed  Google Scholar 

  7. Binder JR, Desai RH (2011) The neurobiology of semantic memory. Trends Cogn Sci 15:527–536. https://doi.org/10.1016/J.TICS.2011.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mahon BZ (2022) Domain-specific connectivity drives the organization of object knowledge in the brain. In: Miceli G, Bartolomeo P, Navarro V (eds) Handbook of Clinical Neurology, 1st edn. Elsevier, pp 221–244

    Google Scholar 

  9. Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42–55. https://doi.org/10.1038/nrn.2016.150

    Article  CAS  Google Scholar 

  10. Gauthier S, Reisberg B, Zaudig M et al (2006) Mild cognitive impairment. The Lancet 367:1262–1270. https://doi.org/10.1016/S0140-6736(06)68542-5

    Article  Google Scholar 

  11. Soria Lopez JA, González HM, Léger GC (2019) Alzheimer’s disease. Handb Clin Neurol 167:231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

    Article  PubMed  Google Scholar 

  12. Almeida VN, Radanovic M (2022) Semantic processing and neurobiology in Alzheimer’s disease and mild cognitive impairment. Neuropsychologia 174:108337. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2022.108337

    Article  PubMed  Google Scholar 

  13. Harris JM, Gall C, Thompson JC et al (2013) Classification and pathology of primary progressive aphasia. Neurology 81:1832–1839. https://doi.org/10.1212/01.WNL.0000436070.28137.7B

    Article  PubMed  Google Scholar 

  14. Tippett DC, Keser Z (2022) Clinical and neuroimaging characteristics of primary progressive aphasia. Handb Clin Neurol 185:81–97. https://doi.org/10.1016/B978-0-12-823384-9.00016-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gainotti G (2014) Old and recent approaches to the problem of non-verbal conceptual disorders in aphasic patients. Cortex 53:78–89. https://doi.org/10.1016/J.CORTEX.2014.01.009

    Article  PubMed  Google Scholar 

  16. Gainotti G (2018) Why do herpes simplex encephalitis and semantic dementia show a different pattern of semantic impairment in spite of their main common involvement within the anterior temporal lobes? Rev Neurosci 29:303–320. https://doi.org/10.1515/revneuro-2017-0034

    Article  PubMed  Google Scholar 

  17. Capitani E, Laiacona M, Mahon BZ, Caramazza A (2003) What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cogn Neuropsychol 20:213–261. https://doi.org/10.1080/02643290244000266

    Article  CAS  PubMed  Google Scholar 

  18. Gainotti G (2010) The influence of anatomical locus of lesion and of gender-related familiarity factors in category-specific semantic disorders for animals, fruits and vegetables: a review of single-case studies. Cortex 46:1072–1087. https://doi.org/10.1016/J.CORTEX.2010.04.002

    Article  PubMed  Google Scholar 

  19. Warrington EK, Shallice T (1984) Category specific semantic impairments. Brain 107:829–854. https://doi.org/10.1093/brain/107.3.829

    Article  PubMed  Google Scholar 

  20. Costa A, Bagoj E, Monaco M et al (2014) Standardization and normative data obtained in the Italian population for a new verbal fluency instrument, the phonemic/semantic alternate fluency test. Neurol Sci 35:365–372. https://doi.org/10.1007/s10072-013-1520-8

    Article  PubMed  Google Scholar 

  21. Zarino B, Crespi M, Launi M, Casarotti A (2014) A new standardization of semantic verbal fluency test. Neurol Sci 35:1405–1411. https://doi.org/10.1007/S10072-014-1729-1

    Article  PubMed  Google Scholar 

  22. Novelli G, Papagno C, Capitani E et al (1986) Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch Psicol Neurol Psichiatr 47:477–506

    Google Scholar 

  23. Papagno C, Casarotti A, Zarino B, Crepaldi D (2020) A new test of action verb naming: normative data from 290 Italian adults. Neurol Sci 41:2811–2817. https://doi.org/10.1007/S10072-020-04353-1

    Article  PubMed  Google Scholar 

  24. Mina C, Marianetti M, Fratino M et al (2010) Recognition and naming of famous buildings: Italian normative data. Neurol Sci 31:441–447. https://doi.org/10.1007/S10072-010-0244-2

    Article  PubMed  Google Scholar 

  25. Bizzozero I, Lucchelli F, Saetti MC, Spinnler H (2007) “Whose face is this?”: Italian norms of naming celebrities. Neurol Sci 28:315–322. https://doi.org/10.1007/S10072-007-0845-6

    Article  CAS  PubMed  Google Scholar 

  26. Catricalà E, Della Rosa PA, Ginex V et al (2013) An Italian battery for the assessment of semantic memory disorders. Neurological Sciences 34:985–993. https://doi.org/10.1007/S10072-012-1181-Z

    Article  PubMed  Google Scholar 

  27. Veronelli L, Scola I, Frustaci M et al (2020) The assessment of severe lexical disorders in Italian individuals with aphasia. Neurol Sci 41:1791–1805. https://doi.org/10.1007/S10072-020-04262-3

    Article  PubMed  Google Scholar 

  28. Mahon BZ, Caramazza A (2009) Concepts and categories: a cognitive neuropsychological perspective. Annu Rev Psychol 60:27–51. https://doi.org/10.1146/annurev.psych.60.110707.163532

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hodges JR, Patterson K (1995) Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia 33:441–459. https://doi.org/10.1016/0028-3932(94)00127-B

    Article  CAS  PubMed  Google Scholar 

  30. Spinnler HR, Tognoni G (1987) Standardizzazione e taratura Italiana di test neuropsicologici. Italian Journal Neurol Sci 8:S1–S120

    Google Scholar 

  31. Bandera L, Luzzatti C, Santoro E, Spinnler H (1991) Prestazioni ad una prova di associazione libera durante l’invecchiamento. G Ital Psicol 18:377–418

    Google Scholar 

  32. Della Rosa PA, Catricalà E, de Battisti S et al (2014) How to assess abstract conceptual knowledge: construction, standardization and validation of a new battery of semantic memory tests. Funct Neurol 29:47–55. https://doi.org/10.11138/FNeur/2014.29.1.047

    Article  PubMed  Google Scholar 

  33. Piccininni C, Quaranta D, Papagno C et al (2018) Famous people recognition through personal name: a normative study. Neurol Sci 39:663–669. https://doi.org/10.1007/S10072-018-3251-3

    Article  PubMed  Google Scholar 

  34. Aiello EN, Rimoldi S, Bolognini N et al (2022) Psychometrics and diagnostics of Italian cognitive screening tests: a systematic review. Neurol Sci 43:821–845. https://doi.org/10.1007/S10072-021-05683-4

    Article  PubMed  Google Scholar 

  35. Luzzatti C, Mauri I, Castiglioni S et al (2020) Evaluating semantic knowledge through a semantic association task in individuals with dementia. Am J Alzheimers Dis Other Demen 35:1–14. https://doi.org/10.1177/1533317520917294

    Article  Google Scholar 

  36. Howard D, Patterson K (1992) The pyramids and palm trees test : a test of semantic access from words and pictures. Pearson Assessment, London, England

  37. Gamboz N, Coluccia E, Iavarone A, Brandimonte MA (2009) Normative data for the Pyramids and Palm Trees Test in the elderly Italian population. Neurol Sci 30:453–458. https://doi.org/10.1007/S10072-009-0130-Y

    Article  PubMed  Google Scholar 

  38. Capitani E, Laiacona M (1997) Composite neuropsychological batteries and demographic correction: standardization based on equivalent scores, with a review of published data. The Italian Group for the Neuropsychological Study of Ageing. J Clin Exp Neuropsychol 19:795–809. https://doi.org/10.1080/01688639708403761

    Article  CAS  PubMed  Google Scholar 

  39. Bang J, Spina S, Miller BL (2015) Frontotemporal dementia. Lancet 386:1672–1682. https://doi.org/10.1016/S0140-6736(15)00461-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  PubMed  Google Scholar 

  41. Rehme AK, Eickhoff SB, Rottschy C et al (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage 59:2771–2782. https://doi.org/10.1016/J.NEUROIMAGE.2011.10.023

    Article  PubMed  Google Scholar 

  42. Capasso R, Miceli G (2001) Esame neuropsicologico per l’afasia (E.N.P.A.). Springer-Verlag, Milano

  43. Kim H-Y (2013) Statistical notes for clinical researchers: understanding standard deviations and standard errors. Restor Dent Endod 38:263–265. https://doi.org/10.5395/RDE.2013.38.4.263

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aiello EN, Depaoli EG (2022) Norms and standardizations in neuropsychology via equivalent scores: software solutions and practical guides. Neurol Sci 43:961–966. https://doi.org/10.1007/S10072-021-05374-0

    Article  PubMed  Google Scholar 

  45. Capitani E, Laiacona M (2017) Outer and inner tolerance limits: their usefulness for the construction of norms and the standardization of neuropsychological tests. Clin Neuropsychol 31:1–12. https://doi.org/10.1080/13854046.2017.1334830

    Article  Google Scholar 

  46. Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill

    Google Scholar 

  47. Crawford JR, Garthwaite PH (2012) Single-case research in neuropsychology: a comparison of five forms of t-test for comparing a case to controls. Cortex 48:1009–1016. https://doi.org/10.1016/J.CORTEX.2011.06.021

    Article  PubMed  Google Scholar 

  48. Callahan BL, Macoir J, Hudon C et al (2010) Normative data for the Pyramids and Palm Trees Test in the Quebec-French population. Arch Clin Neuropsychol 25:212–217. https://doi.org/10.1093/ARCLIN/ACQ013

    Article  PubMed  Google Scholar 

  49. Gudayol-Ferré E, Lara JP, Herrera-Guzman I et al (2008) Semantic memory as assessed by the Pyramids and Palm Trees Test: the impact of sociodemographic factors in a Spanish-speaking population. J Int Neuropsychol Soc 14:148–151. https://doi.org/10.1017/S1355617708080168

    Article  PubMed  Google Scholar 

  50. Mehri A, Mousavi SZ, Kamali M, Maroufizadeh S (2018) Normative data for the Pyramids and Palm Trees Test in literate Persian adults. Iran J Neurol 17:18–23

    PubMed  PubMed Central  Google Scholar 

  51. Mauri I, Zanin V, Aggujaro S et al (2021) The autocracy of meaning: Intact visuo-imitative processes may not compensate for meaningful gestures. Cortex 138:282–301. https://doi.org/10.1016/J.CORTEX.2021.01.023

    Article  PubMed  Google Scholar 

  52. Mervis CB, Catlin J, Rosch E (1976) Relationships among goodness-of-example, category norms, and word frequency. Bull Psychon Soc 7:283–284. https://doi.org/10.3758/BF03337190

    Article  Google Scholar 

  53. Plant C, Webster J, Whitworth A (2011) Category norm data and relationships with lexical frequency and typicality within verb semantic categories. Behav Res Methods 43:424–440. https://doi.org/10.3758/s13428-010-0051-y

    Article  PubMed  Google Scholar 

  54. Meier EL, Lo M, Kiran S (2016) Understanding semantic and phonological processing deficits in adults with aphasia: effects of category and typicality. Aphasiology 30:719–749. https://doi.org/10.1080/02687038.2015.1081137

    Article  PubMed  Google Scholar 

  55. Riley EA, Barbieri E, Weintraub S et al (2018) Semantic typicality effects in primary progressive aphasia. Am J Alzheimers Dis Other Demen 33:292–300. https://doi.org/10.1177/1533317518762443

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rossiter C, Best W (2013) “Penguins don’t fly”: an investigation into the effect of typicality on picture naming in people with aphasia. Aphasiology 27:784–798. https://doi.org/10.1080/02687038.2012.751579

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vita MG, Marra C, Spinelli P et al (2014) Typicality of words produced on a semantic fluency task in amnesic mild cognitive impairment: linguistic analysis and risk of conversion to dementia. J Alzheimer’s Disease 42:1171–1178. https://doi.org/10.3233/JAD-140570

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ilaria Lambiase and Elena Mortarotti, who took part in data collection for the partial fulfilment of their BA in speech and language therapy.

Funding

This research was funded by the Italian Ministry of Health to the IRCCS Istituto Auxologico Italiano.

Author information

Authors and Affiliations

Authors

Contributions

Claudio Luzzatti and Giuseppe Vallar gave an equal contribution to this article.

Corresponding author

Correspondence to Elisabetta Banco.

Ethics declarations

Ethical approval

The study was designed according to the ethical standards of the Declaration of Helsinki and approved by the Ethical Committee of the IRCCS Istituto Auxologico Italiano (Studio 25C122).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banco, E., Veronelli, L., Briguglio, M. et al. The Semantic Association Test (SAT): normative data from healthy Italian participants and a validation study in aphasic patients. Neurol Sci 44, 1575–1586 (2023). https://doi.org/10.1007/s10072-022-06543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06543-5

Keyword

Navigation