Skip to main content
Log in

Inflammatory markers and depression in Parkinson’s disease: a systematic review

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Parkinson’s disease (PD) patients experience non-motor symptoms (NMS), which may appear before motor manifestations. The most common NMS is depression, affecting about 30–40% of PD patients. Both PD and depression are associated with an increased inflammatory burden, with studies showing elevation of diverse inflammatory markers in patients with both conditions.

Methods

A systematic review was conducted in PubMed and PsycINFO databases to investigate what inflammatory markers are associated with PD depression (PDD). Only studies in English that measured inflammatory markers and analyzed against depression scores in PD patients were included.

Results

A total of 1132 articles were retrieved, and 14 entries were found to be eligible. Twelve were cross-sectional studies, one was a cohort, and one was a non-randomized controlled trial. IL-17A was the only marker strongly associated with PDD, while studies assessing sIL-2R and serum amyloid A found a moderate correlation. C-reactive protein, IL-10, tumor necrosis factor-α, monocyte chemoattractant protein-1, and IL-6 yielded conflicting results. Their possible roles in PDD are discussed. PDD was also related to longer disease duration and other NMS, such as anxiety, fatigue, dementia, REM sleep behavior disorder, and autonomic dysfunction.

Conclusion

We suggest that these markers may be used for distinguishing isolated depression from that related to neurodegeneration, especially in individuals that concurrently present with other known prodromal symptoms of PD and other α-synucleinopathies. However, future prospective studies are warranted to confirm this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. https://doi.org/10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  2. Assogna F, Cravello L, Caltagirone C et al (2011) Anhedonia in Parkinson’s disease: a systematic review of the literature. Mov Disord 26(10):1825–1834. https://doi.org/10.1002/MDS.23815

  3. Assogna F, Cravello L, Orfei MD et al (2016) Alexithymia in Parkinson’s disease: a systematic review of the literature. Parkinsonism Relat Disord 28:1–11. https://doi.org/10.1016/J.PARKRELDIS.2016.03.021

    Article  PubMed  Google Scholar 

  4. Leentjens AF, den Akker MV, Metsemakers JFM, ak, (2003) Higher incidence of depression preceding the onset of Parkinson’s disease: a register study. Mov Disord 18:414–418. https://doi.org/10.1002/MDS.10387

    Article  PubMed  Google Scholar 

  5. Caig G, Tolosa E (2009) When does Parkinson’s disease begin? Mov Disord 24(Suppl 2): S656–S664. https://doi.org/10.1002/MDS.22672

  6. Hely MA, Morris JGL, Reid WGJ, Trafficante R (2005) Sydney Multicenter Study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord 20:190–199. https://doi.org/10.1002/mds.20324

    Article  PubMed  Google Scholar 

  7. Reijnders JSAM, Ehrt U, Weber WEJ et al (2008) A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 23:183–189

    Article  PubMed  Google Scholar 

  8. Marsh L (2013) Depression and parkinson’s disease: current knowledge topical collection on movement disorders. Curr Neurol Neurosci Rep 13(409). https://doi.org/10.1007/s11910-013-0409-5

  9. Pålhagen SE, Carlsson M, Curman E et al (2008) Depressive illness in Parkinson’s disease - indication of a more advanced and widespread neurodegenerative process? Acta Neurol Scand 117:295–304. https://doi.org/10.1111/j.1600-0404.2007.00986.x

    Article  PubMed  Google Scholar 

  10. Goodarzi Z, Mrklas KJ, Roberts DJ et al (2016) Detecting depression in Parkinson disease: a systematic review and meta-analysis. Neurol 87:426–437

    Article  Google Scholar 

  11. Marsh L, McDonald WM, Cummings J et al (2006) Provisional diagnostic criteria for depression in Parkinson’s disease: report of an NINDS/NIMH Work Group. Mov Disord 21:148–158

    Article  PubMed  Google Scholar 

  12. Starkstein SE, Brockman S (2017) Management of depression in Parkinson’s disease: a systematic review. Mov Disord Clin Pract 4:470–477

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ravina B, Camicioli R, Como PG et al (2007) The impact of depressive symptoms in early Parkinson disease. Neurol 69:342–347. https://doi.org/10.1212/01.WNL.0000268695.63392.10

    Article  CAS  Google Scholar 

  14. De La Riva P, Smith K, Xie SX, Weintraub D (2014) Course of psychiatric symptoms and global cognition in early Parkinson disease. Neurol 83:1096–1103. https://doi.org/10.1212/WNL.0000000000000801

    Article  Google Scholar 

  15. Shulman LM, Taback RL, Rabinstein AA, Weiner WJ (2002) Non-recognition of depression and other non-motor symptoms in Parkinson’s disease. Park Relat Disord 8:193–197. https://doi.org/10.1016/S1353-8020(01)00015-3

    Article  CAS  Google Scholar 

  16. Lachner C, Armstrong MJ, Gruber-Baldini AL et al (2017) Discordance between physician assessment and patient-reported depressive symptoms in Parkinson disease. J Geriatr Psychiatry Neurol 30:191–195. https://doi.org/10.1177/0891988717710335

    Article  PubMed  Google Scholar 

  17. Bomasang-Layno E, Fadlon I, Murray AN, Himelhoch S (2015) Antidepressive treatments for Parkinson’s disease: a systematic review and meta-analysis. Park Relat Disord 21:833–842

    Article  Google Scholar 

  18. Qin XY, Zhang SP, Cao C et al (2016) Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol 73:1316–1324. https://doi.org/10.1001/jamaneurol.2016.2742

    Article  PubMed  Google Scholar 

  19. Chen X, Hu Y, Cao Z et al (2018) Cerebrospinal fluid inflammatory cytokine aberrations in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Front Immunol 9:2122. https://doi.org/10.3389/fimmu.2018.02122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with c-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186. https://doi.org/10.1097/PSY.0b013e3181907c1b

    Article  CAS  PubMed  Google Scholar 

  21. Dowlati Y, Herrmann N, Swardfager W et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457. https://doi.org/10.1016/j.biopsych.2009.09.033

    Article  CAS  PubMed  Google Scholar 

  22. Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150:736–744

    Article  CAS  PubMed  Google Scholar 

  23. Köhler CA, Freitas TH, Maes M et al (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 135:373–387. https://doi.org/10.1111/acps.12698

    Article  CAS  PubMed  Google Scholar 

  24. Ng A, Tam WW, Zhang MW et al (2018) IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep 8:12050. https://doi.org/10.1038/s41598-018-30487-6

  25. Enache D, Pariante CM, Mondelli V (2019) Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun 81:24–40

    Article  PubMed  Google Scholar 

  26. Modesti PA, Reboldi G, Cappuccio FP et al (2016) Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS One 11(1):e0147601. https://doi.org/10.1371/journal.pone.0147601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lindqvist D, Kaufman E, Brundin L et al (2012) Non-motor symptoms in patients with Parkinson’s disease – correlations with inflammatory cytokines in serum. PLoS One 7(10):e47387. https://doi.org/10.1371/journal.pone.0047387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lindqvist D, Hall S, Surova Y et al (2013) Cerebrospinal fluid inflammatory markers in Parkinson’s disease—associations with depression, fatigue, and cognitive impairment. Brain Behav Immun 33:183–189

    Article  CAS  PubMed  Google Scholar 

  29. Hall S, Janelidze S, Surova Y et al (2018) Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-31517-z

    Article  CAS  Google Scholar 

  30. Pålhagen S, Qi H, Mårtensson B et al (2010) Monoamines, BDNF, IL-6 and corticosterone in CSF in patients with Parkinson’s disease and major depression. J Neurol 257:524–532. https://doi.org/10.1007/s00415-009-5353-6

    Article  CAS  PubMed  Google Scholar 

  31. Santos-García D, de Deus FT, Suárez Castro E et al (2019) High ultrasensitive serum C-reactive protein may be related to freezing of gait in Parkinson’s disease patients. J Neural Transm 126:1599–1608. https://doi.org/10.1007/s00702-019-02096-8

    Article  CAS  PubMed  Google Scholar 

  32. Green HF, Khosousi S, Svenningsson P (2019) Plasma IL-6 and IL-17A Correlate with severity of motor and non-motor symptoms in Parkinson’s disease. J Parkinsons Dis 9:705–709. https://doi.org/10.3233/JPD-191699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veselý B, Dufek M, Thon V et al (2018) Interleukin 6 and complement serum level study in Parkinson’s disease. J Neural Transm 125:875–881

    Article  PubMed  Google Scholar 

  34. Lian T, Guo P, Zhang Y et al (2020) Parkinson’s disease with depression: the correlations between neuroinflammatory factors and neurotransmitters in cerebrospinal fluid. Front Aging Neurosci 12:574776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Selikhova MV, Kushlinskii NE, Lyubimova NV, Gusev EI (2002) Impaired production of plasma interleukin-6 in patients with Parkinson’s disease. Bull Exp Biol Med 133:81–83. https://doi.org/10.1023/a:1015120930920

    Article  CAS  PubMed  Google Scholar 

  36. Menza M, DeFronzo DR, Marin H et al (2010) The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosom J Consult Liaison Psychiatry 51:474–479

    CAS  Google Scholar 

  37. Hassin-Baer S, Cohen OS, Vakil E et al (2011) Is C-reactive protein level a marker of advanced motor and neuropsychiatric complications in Parkinson’s disease? J Neural Transm 118:539–543

    Article  CAS  PubMed  Google Scholar 

  38. Rocha NP, Scalzo PL, Barbosa IG et al (2014) Cognitive status correlates with CXCL10/IP-10 levels in Parkinson’s disease. Parkinsons Dis 2014:903796. https://doi.org/10.1155/2014/903796

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang X-M, Zhang Y-G, Li A-L et al (2016) Relationship between levels of inflammatory cytokines in the peripheral blood and the severity of depression and anxiety in patients with Parkinson’s disease. Eur Rev Med Pharmacol Sci 20:3853–3856

    PubMed  Google Scholar 

  40. Karpenko MN, Vasilishina AA, Gromova EA et al (2018) Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson’s disease. Cell Immunol 327:77–82. https://doi.org/10.1016/j.cellimm.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  41. Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16:448–457

    Article  CAS  PubMed  Google Scholar 

  42. Campbell IL, Erta M, Lim SL et al (2014) Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci 34:2503–2513. https://doi.org/10.1523/JNEUROSCI.2830-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nehring SM, Goyal A, Bansal P, Patel BC (2021) C reactive protein StatPearls 65:237–244

    Google Scholar 

  44. Qiu X, Xiao Y, Wu J et al (2019) C-reactive protein and risk of Parkinson’s disease: a systematic review and meta-analysis. Front Neurol 10:384. https://doi.org/10.3389/fneur.2019.00384

  45. Osimo EF, Baxter LJ, Lewis G et al (2019) Prevalence of low-grade inflammation in depression: a systematic review and meta-Analysis of CRP levels. Psychol Med 49:1958–1970

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haider S, Knöfler M (2009) Human tumour necrosis factor: physiological and pathological roles in placenta and endometrium. Placenta 30:111–123. https://doi.org/10.1016/j.placenta.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  47. Peter I, Dubinsky M, Bressman S et al (2018) Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol 75:939–946. https://doi.org/10.1001/jamaneurol.2018.0605

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Ho RC-M, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139:230–239. https://doi.org/10.1016/J.JAD.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  49. Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21(12):1696–1709.

  50. Chen J, Liu X, Zhong Y (2020) Interleukin-17A: the key cytokine in neurodegenerative diseases. Front Aging Neurosci 12:566922. https://doi.org/10.3389/FNAGI.2020.566922

  51. Storelli E, Cassina N, Rasini E et al (2019) Do Th17 lymphocytes and IL-17 contribute to Parkinson’s disease? A systematic review of available evidence. Front Neurol 10:13. https://doi.org/10.3389/FNEUR.2019.00013

  52. Liu Z, Qiu AW, Huang Y et al (2019) IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s disease. Brain Behav Immun 81:630–645. https://doi.org/10.1016/j.bbi.2019.07.026

    Article  CAS  PubMed  Google Scholar 

  53. Beurel E, Lowell JA (2018) Th17 cells in depression. Brain Behav Immun 69:28–34

    Article  CAS  PubMed  Google Scholar 

  54. Nothdurfter C, Milenkovic VM, Sarubin N et al (2021) The cytokine IL-17A as a marker of treatment resistance in major depressive disorder? Eur J Neurosci 53:172–182. https://doi.org/10.1111/EJN.14636

    Article  CAS  PubMed  Google Scholar 

  55. Bryleva EY, Keaton SA, Grit J et al (2017) The acute-phase mediator serum amyloid A is associated with symptoms of depression and fatigue. Acta Psychiatr Scand 135:409–418. https://doi.org/10.1111/ACPS.12730

    Article  CAS  PubMed  Google Scholar 

  56. van Dooren FEP, Schram MT, Schalkwijk CG et al (2016) Associations of low grade inflammation and endothelial dysfunction with depression - the Maastricht Study. Brain Behav Immun 56:390–396. https://doi.org/10.1016/J.BBI.2016.03.004

    Article  PubMed  Google Scholar 

  57. Kurvits L, Reimann E, Kadastik-Eerme L et al (2019) Serum amyloid alpha is downregulated in peripheral tissues of Parkinson’s disease patients. Front Neurosci 13:13. https://doi.org/10.3389/FNINS.2019.00013

  58. Hiles SA, Baker AL, de Malmanche T et al (2012) A meta-analysis of differences in IL-6 and IL-10 between people with and without depression: exploring the causes of heterogeneity. Brain Behav Immun 26:1180–1188. https://doi.org/10.1016/J.BBI.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  59. Porro C, Cianciulli A, Panaro MA (2020) The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 10:1–15

    Article  Google Scholar 

  60. Santaella A, Kuiperij HB, van Rumund A et al (2020) Inflammation biomarker discovery in Parkinson’s disease and atypical parkinsonisms. BMC Neurol 20(1):26. https://doi.org/10.1186/S12883-020-1608-8

  61. Santaella A, Kuiperij HB, van Rumund A et al (2020) Cerebrospinal fluid monocyte chemoattractant protein 1 correlates with progression of Parkinson’s disease. npj Parkinsons Dis 6:21. https://doi.org/10.1038/s41531-020-00124-z

  62. Wang Y, Zhou M, Wang Y et al (2019) Association of polymorphisms in the MCP-1 and CCR2 genes with the risk of Parkinson’s disease. J Neural Transm 126:1465–1470. https://doi.org/10.1007/S00702-019-02072-2

    Article  CAS  PubMed  Google Scholar 

  63. Hu S, Huang S, Ma J et al (2021) Correlation of decreased serum pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide levels with non-motor symptoms in patients with Parkinson’s disease. Front Aging Neurosci 13:1–10. https://doi.org/10.3389/fnagi.2021.689939

    Article  CAS  Google Scholar 

  64. Ryan M, Eatmon CV, Slevin JT (2019) Drug treatment strategies for depression in Parkinson disease. Expert Opin Pharmacother 20:1351–1363

    Article  CAS  PubMed  Google Scholar 

  65. Anders S, Sack B, Pohl A et al (2012) Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele. Brain 135:1128–1140. https://doi.org/10.1093/brain/aws040

    Article  PubMed  PubMed Central  Google Scholar 

  66. Borgonovo J, Allende-Castro C, Laliena A et al (2017) Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson’s disease. Parkinsonism Relat Disord 35:17–24. https://doi.org/10.1016/j.parkreldis.2016.11.009

    Article  PubMed  Google Scholar 

  67. Assogna F, Pellicano C, Savini C et al (2020) Drug choices and advancements for managing depression in Parkinson’s disease. Curr Neuropharmacol 18:277–287. https://doi.org/10.2174/1570159X17666191016094857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zaminelli T, Gradowski RW, Bassani TB et al (2014) Antidepressant and antioxidative effect of ibuprofen in the rotenone model of Parkinson’s disease. Neurotox Res 26:351–362. https://doi.org/10.1007/s12640-014-9467-y

    Article  CAS  PubMed  Google Scholar 

  69. Santiago RM, Tonin FS, Barbiero J et al (2015) The nonsteroidal antiinflammatory drug piroxicam reverses the onset of depressive-like behavior in 6-OHDA animal model of Parkinson’s disease. Neurosci 300:246–253. https://doi.org/10.1016/J.NEUROSCIENCE.2015.05.030

    Article  CAS  Google Scholar 

  70. Campolo M, Paterniti I, Siracusa R et al (2019) TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson’s diseases in vivo model. Brain Behav Immun 76:236–247. https://doi.org/10.1016/j.bbi.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  71. Huang J, Hong W, Yang Z et al (2020) Efficacy of pramipexole combined with levodopa for Parkinson’s disease treatment and their effects on QOL and serum TNF-α levels. J Int Med Res 48:300060520922449. https://doi.org/10.1177/0300060520922449

    Article  CAS  PubMed  Google Scholar 

  72. Daneshvar Kakhaki R, Ostadmohammadi V, Kouchaki E et al (2020) Melatonin supplementation and the effects on clinical and metabolic status in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin Neurol Neurosurg 195:105878. https://doi.org/10.1016/j.clineuro.2020.105878

    Article  PubMed  Google Scholar 

  73. Greenland JC, Cutting E, Kadyan S et al (2020) Azathioprine immunosuppression and disease modification in Parkinson’s disease (AZA-PD): a randomised double-blind placebo-controlled phase II trial protocol. BMJ Open 10:e040527. https://doi.org/10.1136/bmjopen-2020-040527

    Article  PubMed  PubMed Central  Google Scholar 

  74. Santos-García D, Mir P, Cubo E et al (2016) COPPADIS-2015 (COhort of Patients with PArkinson’s DIsease in Spain, 2015 a global –clinical evaluations, serum biomarkers, genetic studies and neuroimaging– prospective, multicenter, non-interventional, long-term study on Parkinson’s disease progressio. BMC Neurol 16:26.

  75. Picca A, Guerra F, Calvani R et al (2019) Mitochondrial-derived vesicles as candidate biomarkers in Parkinson’s disease: rationale, design and methods of the EXosomes in PArkiNson Disease (EXPAND) Study. Int J Mol Sci 20(10):2373. https://doi.org/10.3390/ijms20102373

Download references

Author information

Authors and Affiliations

Authors

Contributions

Luís Guilherme Ramanzini: conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, visualization, writing – original draft preparation, writing – review and editing. Luís Fernando Camargo: conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, visualization, writing – original draft preparation, writing – review and editing. Juliana Oliveira Freitas Silveira: validation, writing – original draft preparation, writing – review and editing. Guilherme Vargas Bochi: conceptualization, data curation, investigation, methodology, project administration, supervision, visualization, writing – original draft preparation, writing – review and editing.

Corresponding author

Correspondence to Luis Guilherme Ramanzini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not required.

Informed consent statement

Not required.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanzini, L., Camargo, L.M., Silveira, J.O.F. et al. Inflammatory markers and depression in Parkinson’s disease: a systematic review. Neurol Sci 43, 6707–6717 (2022). https://doi.org/10.1007/s10072-022-06363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06363-7

Keywords

Navigation