Skip to main content

Advertisement

Log in

The prediction effects of thyroid function in the severity of Guillain-Barré syndrome

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Guillain-Barré syndrome (GBS), an acquired immune-mediated inflammatory disorder affecting the peripheral nervous system (PNS), is usually complicated with autoimmune diseases including thyroid diseases. Herein, we explored roles of thyroid function and thyroid autoantibodies in the disease severity and its short-term prognosis of GBS. In addition, we further investigated the predictive value of thyroid function for GBS respiratory insufficiency.

Materials and methods

We retrospectively analyzed the clinical data of 219 GBS patients. According to the thyroid function, the enrolled subjects were divided into 2 groups, that is, patients with abnormal thyroid function (case group) and those with normal thyroid function (control group). The clinical characteristics, disease severity, and short-term prognosis of the patients in 2 groups were compared. In addition, we also divided the 219 GBS patients into mechanical ventilation (MV) group and non-MV group according to whether MV was performed within 1 week after admission. The clinical characteristics, disease severity, short-term prognosis, Erasmus GBS respiratory insufficiency score (EGRIS), and the thyroid function were compared in the two groups.

Results

We found that GBS patients with abnormal thyroid function had longer duration of hospitalization, higher frequency of cranial nerve damage, and higher incidence of weakened tendon reflexes. Medical Research Council (MRC) scores on admission, at nadir, and at discharge were lower, and Hughes Functional Grading Scale (HFGS) scores on admission and at discharge were higher in GBS patients with abnormal thyroid function group. More patients in the abnormal thyroid function group had myelin, axonal, and myelin-axonal injuries. In the MV group, the time from onset to admission, MRC scores on admission, and the levels of free triiodothyronine (FT3) were lower; the levels of thyroglobulin antibody (TgAb) and EGRIS were significantly higher than those in the non-MV group. The combination of EGRIS and FT3 serum levels to predict GBS patients with MV, the area under the curve (AUC) was 0.905 (95% CI: 0.861 to 0.948, P < 0.05), sensitivity was 88.9%, and specificity was 84.7%.

Conclusion

Our results suggest that the serum FT3 levels are negatively correlated with disease severity; the serum FT3 might be a biomarker for the incidence and severity of GBS. Both EGRIS and serum FT3 have a predictive value for the occurrence of acute respiratory insufficiency in GBS patients, and the combination of these two indicators can more accurately predict the risk of acute respiratory insufficiency in GBS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GBS:

Guillain-Barré syndrome

FT3:

Free triiodothyronine

FT4:

Free thyroxine

TSH:

Thyroid-stimulating hormone

TPOAb:

Thyroperoxidase antibody

TgAb:

Thyroglobulin antibody

TH:

Thyroid hormone

PNS:

Peripheral nervous system

MV:

Mechanical ventilation

EGRIS:

Erasmus GBS respiratory insufficiency score

MRC:

Medical Research Council

HFGS:

Hughes Functional Grading Scale

CNS:

Central nervous system

OPCs:

Oligodendrocyte precursor cells

MS:

Multiple sclerosis

CIDP:

Chronic inflammatory demyelinating polyneuropathy

IFN-γ:

Interferon γ

TNF-α:

Tumor necrosis factor α

IL-17:

Interleukin-17

ROS:

Reactive oxygen species

ROC:

Receiver operating characteristic

AUC:

Area under the curve

References

  1. Van Den Berg B, Walgaard C, Drenthen J et al (2014) Guillain-Barré syndrome: pathogenesis, diagnosis, treatment and prognosis [J]. Nat Rev Neurol 10(8):469–482

    Article  PubMed  Google Scholar 

  2. Liu S, Dong C, Ubogu EE (2018) Immunotherapy of Guillain-Barré syndrome [J]. Hum Vaccin Immunother 14(11):2568–2579

    PubMed  PubMed Central  Google Scholar 

  3. Shahrizaila N, Lehmann HC, Kuwabara S (2021) Guillain-Barré syndrome [J]. Lancet 397(10280):1214–1228

    Article  CAS  PubMed  Google Scholar 

  4. Brent GA (2012) Mechanisms of thyroid hormone action [J]. J Clin Invest 122(9):3035–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zoeller RT, Rovet J (2004) Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings [J]. J Neuroendocrinol 16(10):809–818

    Article  CAS  PubMed  Google Scholar 

  6. Franco PG, Silvestroff L, Soto EF et al (2008) Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination [J]. Exp Neurol 212(2):458–467

    Article  CAS  PubMed  Google Scholar 

  7. Dell’Acqua ML, Lorenzini L, D’Intino G et al (2012) Functional and molecular evidence of myelin- and neuroprotection by thyroid hormone administration in experimental allergic encephalomyelitis [J]. Neuropathol Appl Neurobiol 38(5):454–470

    Article  PubMed  Google Scholar 

  8. Long Y, Zheng Y, Chen M, et al. (2014) Serum thyroid-stimulating hormone and anti-thyroglobulin antibody are independently associated with lesions in spinal cord in central nervous system demyelinating diseases [J]. PLoS One 9(8): e100672

  9. Zhao W, Zeng H, Zhang X et al (2016) A high thyroid stimulating hormone level is associated with diabetic peripheral neuropathy in type 2 diabetes patients [J]. Diabetes Res Clin Pract 115:122–129

    Article  CAS  PubMed  Google Scholar 

  10. Umehara T, Matsuno H, Toyoda C et al (2015) Thyroid hormone level is associated with motor symptoms in de novo Parkinson’s disease [J]. J Neurol 262(7):1762–1768

    Article  CAS  PubMed  Google Scholar 

  11. Johansson P, Almqvist EG, Johansson JO et al (2013) Reduced cerebrospinal fluid level of thyroxine in patients with Alzheimer’s disease [J]. Psychoneuroendocrinology 38(7):1058–1066

    Article  CAS  PubMed  Google Scholar 

  12. Tozzoli R, Sorrentino MC, Bizzaro N (2013) Detecting multiple autoantibodies to diagnose autoimmune co-morbidity (multiple autoimmune syndromes and overlap syndromes): a challenge for the autoimmunologist [J]. Immunol Res 56(2–3):425–431

    Article  CAS  PubMed  Google Scholar 

  13. Kohli RS, Bleibel W, Bleibel H (2007) Concurrent immune thrombocytopenic purpura and Guillain-Barre syndrome in a patient with Hashimoto’s thyroiditis [J]. Am J Hematol 82(4):307–308

    Article  PubMed  Google Scholar 

  14. Toudou Daouda M, Obenda NS, Maazou L et al (2016) Guillain-Barre syndrome and Hashimoto’s thyroiditis [J]. QJM 109(8):547–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hughes RA, Newsom-Davis JM, Perkin GD et al (1978) Controlled trial prednisolone in acute polyneuropathy [J]. Lancet 2(8093):750–753

    Article  CAS  PubMed  Google Scholar 

  16. Kleyweg RP, Van Der Meché FG, Schmitz PI (1991) Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome [J]. Muscle Nerve 14(11):1103–1109

    Article  CAS  PubMed  Google Scholar 

  17. Walgaard C, Lingsma HF, Ruts L et al (2010) Prediction of respiratory insufficiency in Guillain-Barré syndrome [J]. Ann Neurol 67(6):781–787

    PubMed  Google Scholar 

  18. Naik GS, Meena AK, Reddy BAK et al (2017) Anti-ganglioside antibodies profile in Guillain-Barré syndrome: correlation with clinical features, electrophysiological pattern, and outcome [J]. Neurol India 65(5):1001–1005

    Article  PubMed  Google Scholar 

  19. Nobile-Orazio E (2001) Multifocal motor neuropathy [J]. J Neuroimmunol 115(1–2):4–18

    Article  CAS  PubMed  Google Scholar 

  20. McGonigal R, Rowan EG, Greenshields KN et al (2010) Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice [J]. Brain 133(Pt 7):1944–1960

    Article  PubMed  Google Scholar 

  21. Ahn SW, Kim SH, Park BS et al (2011) Concurrence of multifocal motor neuropathy and Hashimoto’s thyroiditis [J]. J Clin Neurol 7(3):168–172

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tu Y, Gong X, Zeng G, et al. (2020) Differences in thyroid function and autoantibodies in the development of Guillain-Barré syndrome vs. chronic inflammatory demyelinating polyradiculoneuropathy [J]. Front Neurol 11: 1018

  23. Fishman PS, Shy ME, Hart DE et al (1991) Antibodies to the ganglioside GD1b in a patient with motor neuron disease and thyroid adenoma [J]. Arch Neurol 48(11):1188–1190

    Article  CAS  PubMed  Google Scholar 

  24. Beppu M, Sawai S, Misawa S et al (2015) Serum cytokine and chemokine profiles in patients with chronic inflammatory demyelinating polyneuropathy [J]. J Neuroimmunol 279:7–10

    Article  CAS  PubMed  Google Scholar 

  25. Karanikas G, Schuetz M, Wahl K et al (2005) Relation of anti-TPO autoantibody titre and T-lymphocyte cytokine production patterns in Hashimoto’s thyroiditis [J]. Clin Endocrinol (Oxf) 63(2):191–196

    Article  Google Scholar 

  26. Kokkotou E, Marafelia P, Mantzos EI et al (2002) Serum monocyte chemoattractant protein-1 is increased in chronic autoimmune thyroiditis [J]. Metabolism 51(11):1489–1493

    Article  CAS  PubMed  Google Scholar 

  27. Comi C, Fleetwood T, Dianzani U (2012) The role of T cell apoptosis in nervous system autoimmunity [J]. Autoimmun Rev 12(2):150–156

    Article  CAS  PubMed  Google Scholar 

  28. Guzman-Rojas L, Sims-Mourtada JC, Rangel R et al (2002) Life and death within germinal centres: a double-edged sword [J]. Immunology 107(2):167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li-Weber M, Krammer PH (2003) Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system [J]. Semin Immunol 15(3):145–157

    Article  CAS  PubMed  Google Scholar 

  30. Bona G, Defranco S, Chiocchetti A et al (2003) Defective function of Fas in T cells from paediatric patients with autoimmune thyroid diseases [J]. Clin Exp Immunol 133(3):430–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gümüşyayla Ş, Vural G, Yurtoğullari Çevik Ş et al (2019) Dynamic thiol-disulphide homeostasis in patients with Guillain-Barre syndrome [J]. Neurol Res 41(5):413–418

    Article  PubMed  Google Scholar 

  32. Moog NK, Entringer S, Heim C et al (2017) Influence of maternal thyroid hormones during gestation on fetal brain development [J]. Neuroscience 342:68–100

    Article  CAS  PubMed  Google Scholar 

  33. Mohácsik P, Zeöld A, Bianco A C, et al. (2011) Thyroid hormone and the neuroglia: both source and target [J]. J Thyroid Res 2011: 215718

  34. Crantz FR, Silva JE, Larsen PR (1982) An analysis of the sources and quantity of 3,5,3′-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum [J]. Endocrinology 110(2):367–375

    Article  CAS  PubMed  Google Scholar 

  35. Mancini A, Di Segni C, Raimondo S et al (2016) Thyroid hormones, oxidative stress, and inflammation [J]. Mediators Inflamm 2016:6757154

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zych-Twardowska E, Wajgt A (2001) Blood levels of selected hormones in patients with multiple sclerosis [J]. Med Sci Monit 7(5):1005–1012

    CAS  PubMed  Google Scholar 

  37. Li Q, Qi X, Jia W (2016) 3,3′,5-Triiodothyroxine inhibits apoptosis and oxidative stress by the PKM2/PKM1 ratio during oxygen-glucose deprivation/reperfusion AC16 and HCM-a cells: T3 inhibits apoptosis and oxidative stress by PKM2/PKM1 ratio [J]. Biochem Biophys Res Commun 475(1):51–56

    Article  CAS  PubMed  Google Scholar 

  38. Huang Y, Ying Z, Chen Z et al (2017) Thyroid hormone level is associated with the frequency and severity of Guillain-Barré syndrome [J]. Int J Neurosci 127(10):893–899

    Article  CAS  PubMed  Google Scholar 

  39. Witsch J, Galldiks N, Bender A et al (2013) Long-term outcome in patients with Guillain-Barré syndrome requiring mechanical ventilation [J]. J Neurol 260(5):1367–1374

    Article  CAS  PubMed  Google Scholar 

  40. Green C, Baker T, Subramaniam A (2018) Predictors of respiratory failure in patients with Guillain-Barré syndrome: a systematic review and meta-analysis [J]. Med J Aust 208(4):181–188

    Article  PubMed  Google Scholar 

  41. Tan CY, Razali SNO, Goh KJ et al (2019) The utility of Guillain-Barré syndrome prognostic models in Malaysian patients [J]. J Peripher Nerv Syst 24(2):168–173

    Article  PubMed  Google Scholar 

  42. Podlaska M, Chełmińska M, Sworczak K (2003) Respiratory disorders in thyroid pathology] [J. Wiad Lek 56(9–10):468–474

    PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from The First Hospital, Jilin University, Changchun, China, General Program of the National Natural Science Foundation (No. 81771299).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design: Chunrong Li. Writing the manuscript and implementation of the experiment: Lingxin Kong. Data analysis: Xiujuan Wu, Yanwei Cheng, Kangding Liu, and Shan Liu.

Corresponding author

Correspondence to Chunrong Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was approved by Ethics Committee of the Neuroscience Center, Department of Neurology, The First Hospital of Jilin University.

Informed consent

Informed consent was obtained from all patients and their legal representatives.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Wu, X., Cheng, Y. et al. The prediction effects of thyroid function in the severity of Guillain-Barré syndrome. Neurol Sci 43, 5017–5028 (2022). https://doi.org/10.1007/s10072-022-06070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06070-3

Keywords

Navigation