Skip to main content
Log in

Perampanel for amyotrophic lateral sclerosis: A systematic review and meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease. There is still no established cost-effective treatment that can improve functional status and survival of ALS patients. Perampanel, by inhibiting neuronal calcium ion influx and preventing dyslocalization of nuclear proteins, has the potential to ameliorate ALS neurodegeneration.

Objectives

This study aims to determine the efficacy and safety of perampanel among ALS patients in terms of improvement in functional status using a review of relevant studies.

Methods

MedLine, Cochrane Central Register for Controlled Trials, Scopus, Embase, Literatura Latino-Americana e do Caribe em Ciências da Saúde, ClinicalTrials.gov website, and HERDIN databases were searched from inception to August 2021 for relevant studies.

Results

The search yielded 132 articles; 3 studies were included in the analysis. Pooled evidence shows that perampanel compared to placebo significantly improves cortical motor hyperexcitability but not the ALS functional rating scale-revised score. Perampanel is associated with adverse events such as aggression, somnolence, anger, and dysarthria.

Conclusion

There is no sufficient evidence to support the role of perampanel in improving functional status of ALS patients. Although it can ameliorate motor cortical hyperexcitability, its clinical benefit has not yet been elucidated. Perampanel is not well tolerated among ALS patients as it is associated with adverse events such as aggression, somnolence, anger, and dysarthria. Further studies investigating the role of perampanel early in the ALS disease course, excluding ALS patients with frontotemporal lobe degeneration features and C9ORF72 repeat expansion, and using gradual drug titration schedule are needed to evaluate the potential benefit of perampanel in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Prim 3:17071. https://doi.org/10.1038/nrdp.2017.71

    Article  PubMed  Google Scholar 

  2. van Es MA, Hardiman O, Chio A et al (2017) Amyotrophic lateral sclerosis. Lancet 390:2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4

    Article  PubMed  Google Scholar 

  3. Chiò A, Logroscino G, Traynor BJ et al (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41:118–130. https://doi.org/10.1159/000351153

    Article  PubMed  Google Scholar 

  4. Foster LA, Salajegheh MK (2019) Motor neuron disease: pathophysiology, diagnosis, and management. Am J Med 132:32–37. https://doi.org/10.1016/j.amjmed.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  5. Blokhuis AM, Groen EJN, Koppers M et al (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125:777–794. https://doi.org/10.1007/s00401-013-1125-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gordon P (2013) Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials. Aging Dis 04:295–310. https://doi.org/10.14336/AD.2013.0400295

    Article  Google Scholar 

  7. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477. https://doi.org/10.1038/nri3705

    Article  CAS  PubMed  Google Scholar 

  8. Kiernan MC, Vucic S, Talbot K et al (2021) Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 17:104–118. https://doi.org/10.1038/s41582-020-00434-z

    Article  PubMed  Google Scholar 

  9. Miller RG, Mitchell JD, Moore DH (2012) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001447.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abe K, Aoki M, Tsuji S et al (2017) Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16:505–512. https://doi.org/10.1016/S1474-4422(17)30115-1

    Article  Google Scholar 

  11. Paganoni S, Macklin EA, Hendrix S et al (2020) Trial of sodium Phenylbutyrate-Taurursodiol for amyotrophic lateral sclerosis. N Engl J Med 383:919–930. https://doi.org/10.1056/NEJMoa1916945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paganoni S, Hendrix S, Dickson SP et al (2021) Long-term survival of participants in the <scp>CENTAUR</scp> trial of sodium phenylbutyrate-taurursodiol in <scp>amyotrophic lateral sclerosis</scp>. Muscle Nerve 63:31–39. https://doi.org/10.1002/mus.27091

    Article  CAS  PubMed  Google Scholar 

  13. Tavakoli M, Malek M (2001) The cost utility analysis of riluzole for the treatment of amyotrophic lateral sclerosis in the UK. J Neurol Sci 191:95–102. https://doi.org/10.1016/S0022-510X(01)00618-9

    Article  CAS  PubMed  Google Scholar 

  14. Messori A, Trippoli S, Becagli P, Zaccara G (1999) Cost effectiveness of Riluzole in amyotrophic lateral sclerosis. Pharmacoeconomics 16:153–163. https://doi.org/10.2165/00019053-199916020-00004

    Article  CAS  PubMed  Google Scholar 

  15. Yeo CJJ, Simmons Z (2018) Discussing edaravone with the ALS patient: an ethical framework from a U.S. perspective. Amyotroph Lateral Scler Front Degener 19:167–172. https://doi.org/10.1080/21678421.2018.1425455

    Article  Google Scholar 

  16. Sills GJ, Rogawski MA (2020) Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 168:107966. https://doi.org/10.1016/j.neuropharm.2020.107966

    Article  CAS  PubMed  Google Scholar 

  17. Akamatsu M, Yamashita T, Hirose N et al (2016) The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Sci Rep 6:28649. https://doi.org/10.1038/srep28649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oskarsson B, Mauricio EA, Shah JS et al (2021) Cortical excitability threshold can be increased by the AMPA blocker Perampanel in amyotrophic lateral sclerosis. Muscle Nerve 64:215–219. https://doi.org/10.1002/mus.27328

    Article  CAS  PubMed  Google Scholar 

  19. Hotait M, Ismail HH, Saab GE, Salameh JS (2021) An open label pilot study of the safety and tolerability of Perampanel in amyotrophic lateral sclerosis. Muscle Nerve 64(4):504–508. https://doi.org/10.1002/mus.27385

  20. Aizawa H, Kato H, Oba K et al (2021) Randomized phase 2 study of perampanel for sporadic amyotrophic lateral sclerosis. J Neurol. https://doi.org/10.1007/s00415-021-10670-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ludolph A, Drory V, Hardiman O et al (2015) A revision of the El Escorial criteria - 2015. Amyotroph Lateral Scler Front Degener 16:291–292. https://doi.org/10.3109/21678421.2015.1049183

    Article  Google Scholar 

  23. Nodera H, Izumi Y, Kaji R (2007) New diagnostic criteria of ALS (Awaji criteria). Brain Nerve 59:1023–1029. https://doi.org/10.11477/mf.1416100142

    Article  PubMed  Google Scholar 

  24. Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci 169:13–21. https://doi.org/10.1016/S0022-510X(99)00210-5

    Article  CAS  PubMed  Google Scholar 

  25. Mackenzie IRA, Bigio EH, Ince PG et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434. https://doi.org/10.1002/ana.21147

    Article  CAS  PubMed  Google Scholar 

  26. Guo C, Ma Y-Y (2021) Calcium Permeable-AMPA receptors and excitotoxicity in neurological disorders. Front Neural Circuits 15:711564. https://doi.org/10.3389/fncir.2021.711564

  27. Barmada SJ, Skibinski G, Korb E et al (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30:639–649. https://doi.org/10.1523/JNEUROSCI.4988-09.2010

  28. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64. https://doi.org/10.1093/hmg/ddq137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Osawa T, Mizuno Y, Fujita Y et al (2011) Optineurin in neurodegenerative diseases. Neuropathology 31:569–574. https://doi.org/10.1111/j.1440-1789.2011.01199.x

    Article  PubMed  Google Scholar 

  30. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng H-X, Chen W, Hong S-T et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215. https://doi.org/10.1038/nature10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elden AC, Kim H-J, Hart MP et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075. https://doi.org/10.1038/nature09320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jaiswal MK (2017) Riluzole but not melatonin ameliorates acute motor neuron degeneration and moderately inhibits SOD1-mediated excitotoxicity induced disrupted mitochondrial Ca2+ signaling in amyotrophic lateral sclerosis. Front Cell Neurosci 10:295. https://doi.org/10.3389/fncel.2016.00295

  34. Keon M, Musrie B, Dinger M et al (2021) Destination amyotrophic lateral sclerosis. Front Neurol 12:596006. https://doi.org/10.3389/fneur.2021.596006

  35. Youn SE, Kim SH, Ko A et al (2018) Adverse events during perampanel adjunctive therapy in intractable epilepsy. J Clin Neurol 14:296. https://doi.org/10.3988/jcn.2018.14.3.296

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rugg-Gunn F (2014) Adverse effects and safety profile of perampanel: a review of pooled data. Epilepsia 55:13–15. https://doi.org/10.1111/epi.12504

    Article  CAS  PubMed  Google Scholar 

  37. Abramzon YA, Fratta P, Traynor BJ, Chia R (2020) The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front Neurosci 14:42. https://doi.org/10.3389/fnins.2020.00042

  38. Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438. https://doi.org/10.1016/j.neuron.2013.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montuschi A, Iazzolino B, Calvo A et al (2015) Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. J Neurol Neurosurg Psychiatry 86:168–173. https://doi.org/10.1136/jnnp-2013-307223

    Article  PubMed  Google Scholar 

  40. Gotovac K, NikolacPerković M, Pivac N, Borovečki F (2016) Biomarkers of aggression in dementia. Prog Neuro-Psychopharmacology Biol Psychiatry 69:125–130. https://doi.org/10.1016/j.pnpbp.2016.03.002

    Article  CAS  Google Scholar 

  41. Grochmal-Bach B, Bidzan L, Pachalska M et al (2009) Aggressive and impulsive behaviors in Frontotemporal dementia and Alzheimer’s disease. Med Sci Monit 15:CR248-54

    PubMed  Google Scholar 

  42. Byrne S, Elamin M, Bede P et al (2012) Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol 11:232–240. https://doi.org/10.1016/S1474-4422(12)70014-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bersano E, Sarnelli MF, Solara V et al (2020) Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotroph Lateral Scler Front Degener 21:373–379. https://doi.org/10.1080/21678421.2020.1771732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wilson R. Turalde.

Ethics declarations

Conflict of interest

None. There are no conflicts of interest to declare in this research.

Ethical approval and informed consent

No ethical approval is needed because data from published studies in which informed consent was obtained by investigators were retrieved and analysed.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turalde, C.W.R., Moalong, K.M.C., Espiritu, A.I. et al. Perampanel for amyotrophic lateral sclerosis: A systematic review and meta-analysis. Neurol Sci 43, 889–897 (2022). https://doi.org/10.1007/s10072-022-05867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05867-6

Keywords

Navigation