Skip to main content

Advertisement

Log in

Efficacy of low-level laser therapy in nerve injury repair—a new era in therapeutic agents and regenerative treatments

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Traumatic nerve injuries may result in severe motor dysfunctions. Although the microenvironment of peripheral axons favors their regeneration, regenerative process is not always successful.

Purpose

We reviewed and discussed the main findings obtained with low-level laser therapy (LLLT), a therapeutic intervention that has been employed in order to achieve an optimized regeneration process in peripheral axons.

Scope

Disseminating the best available evidence for the effectiveness of this therapeutic strategy can potentially improve the statistics of success in the clinical treatment of nerve injuries. We found evidence that LLLT optimizes the regeneration of peripheral axons, improving motor function, especially in animal models. Nonetheless, further clinical evidence is still needed before LLLT can be strongly recommended. Although the results are promising, the elucidation of the mechanisms of action and safety assessment are necessary to support highquality clinical studies.

Conclusion

The present careful compilation of findings with consistent pro-regenerative evidence and published in respected scientific journals can be valuable for health professionals and researchers in the field, possibly contributing to achieve more promising results in future randomized controlled trials and interventions, providing better prognosis for clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huckhagel T, Nüchtern J, Regelsberger J, Lefering R, DGU TraumaRegister (2018) Nerve injury in severe trauma with upper extremity involvement: evaluation of 49,382 patients from the TraumaRegister DGU® between 2002 and 2015. Scand J Trauma Resusc Emerg Med 26(1):76. https://doi.org/10.1186/s13049-018-0546-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huckhagel T, Nüchtern J, Regelsberger J, Gelderblom M, Lefering R, TraumaRegister DGU® (2018) Nerve trauma of the lower extremity: evaluation of 60,422 leg injured patients from the TraumaRegister DGU® between 2002 and 2015. Scand J Trauma Resusc Emerg Med 26(1):40. https://doi.org/10.1186/s13049-018-0502-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  CAS  Google Scholar 

  4. Freeman MR (2014) Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol 27:224–231

    Article  CAS  Google Scholar 

  5. Weerasuriya A, Mizisin AP (2011) The blood-nerve barrier: structure and functional significance. Methods Mol Biol 686:149–173

    Article  CAS  Google Scholar 

  6. Nadeau S, Filali M, Zhang J et al (2011) Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci 31:12533–12542. https://doi.org/10.1523/JNEUROSCI.2840-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown BN, Ratner BD, Goodman SB et al (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33:3792–3802. https://doi.org/10.1016/j.biomaterials.2012.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zigmond RE, Echevarria FD (2019) Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 173:102–121

    Article  CAS  Google Scholar 

  9. Bosse F (2012) Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 349:5–14

    Article  CAS  Google Scholar 

  10. Smith TP, Sahoo PK, Kar AN, Twiss JL (2020) Intra-axonal mechanisms driving axon regeneration. Brain Res 1740:146864

    Article  CAS  Google Scholar 

  11. Miclescu A, Straatmann A, Gkatziani P, Butler S, Karlsten R, Gordh T (2019) Chronic neuropathic pain after traumatic peripheral nerve injuries in the upper extremity: prevalence, demographic and surgical determinants, impact on health and on pain medication. Scand J Pain 20(1):95–108. https://doi.org/10.1515/sjpain-2019-0111

    Article  PubMed  Google Scholar 

  12. Osborne NR, Anastakis DJ, Davis KD (2018) Peripheral nerve injuries, pain, and neuroplasticity. J Hand Ther Off J Am Soc Hand Ther 31(2):184–194. https://doi.org/10.1016/j.jht.2018.01.011

    Article  Google Scholar 

  13. Lee AC, Yu VM, Lowe JB et al (2003) Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol 184:295–303. https://doi.org/10.1016/S0014-4886(03)00258-9

    Article  CAS  PubMed  Google Scholar 

  14. Gigo-Benato D, Geuna S, Rochkind S (2005) Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31:694–701

    Article  Google Scholar 

  15. Commission IE (2001) Standard - safety of laser products - part 1: equipment classification, requirements and user’s guide IEC 60825–1:1993+AMD1:1997+AMD2:2001 CSV. https://www.sis.se/en/produkter/environment-health-protection-safety/safety-of-machinery/iec6082511993amd11997amd22001csv/. Accessed 24 Aug 2020

  16. Nisa ZU, Zafar A, Sher F (2018) Assessment of knowledge, attitude and practice of adverse drug reaction reporting among healthcare professionals in secondary and tertiary hospitals in the capital of Pakistan. Saudi Pharm J 26(4):453–461. https://doi.org/10.1016/j.jsps.2018.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shin DH, Lee E, Hyun JK et al (2003) Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 344:71–74

    Article  CAS  Google Scholar 

  18. Buchaim RL, Andreo JC, Barraviera B et al (2015) Effect of low-level laser therapy (LLLT) on peripheral nerve regeneration using fibrin glue derived from snake venom. Injury 46:655–660. https://doi.org/10.1016/j.injury.2015.01.031

    Article  PubMed  Google Scholar 

  19. Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099

    Article  CAS  Google Scholar 

  20. Gong Y, Wang S, Liang Z, Wang Z, Zhang X, Li J, Song J, Hu X, Wang K, He Q, Bai J (2018) Label-free spectral imaging unveils biochemical mechanisms of low-level laser therapy on spinal cord injury. Cell Physiol Biochem 49(3):1127–1142. https://doi.org/10.1159/000493295

    Article  CAS  PubMed  Google Scholar 

  21. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:1–16. https://doi.org/10.1186/1423-0127-16-4

    Article  CAS  Google Scholar 

  22. Zhang J, Sun J, Zheng Q, Hu X, Wang Z, Liang Z et al (2020) Low-level laser therapy 810-nm up-regulates macrophage secretion of neurotrophic factors via PKA-CREB and promotes neuronal axon regeneration in vitro. J Cell Mol Med 24(1):476–487. https://doi.org/10.1111/jcmm.14756

    Article  CAS  PubMed  Google Scholar 

  23. MashhoudiBarez M, Tajziehchi M, Heidari MH, Bushehri A, Moayer F, Mansouri N et al (2017) Stimulation effect of low level laser therapy on sciatic nerve regeneration in rat. J Lasers Med Sci. 8(Suppl 1):S32–S37. https://doi.org/10.15171/jlms.2017.s7

    Article  Google Scholar 

  24. Wang CZ, Chen YJ, Wang YH et al (2014) Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS ONE 9:e103348. https://doi.org/10.1371/journal.pone.0103348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tascioglu F, Degirmenci NA, Ozkan S, Mehmetoglu O (2012) Low-level laser in the treatment of carpal tunnel syndrome: clinical, electrophysiological, and ultrasonographical evaluation. Rheumatol Int 32:409–415. https://doi.org/10.1007/s00296-010-1652-6

    Article  PubMed  Google Scholar 

  26. Pratelli E, Pintucci M, Cultrera P et al (2015) Conservative treatment of carpal tunnel syndrome: comparison between laser therapy and fascial manipulation®. J Bodyw Mov Ther 19:113–118. https://doi.org/10.1016/j.jbmt.2014.08.002

    Article  PubMed  Google Scholar 

  27. Dakowicz A, Kuryliszyn-Moskal A, Kosztyła-Hojna B et al (2011) Comparison of the long-term effectiveness of physiotherapy programs with low-level laser therapy and pulsed magnetic field in patients with carpal tunnel syndrome. Adv Med Sci 56:270–274. https://doi.org/10.2478/v10039-011-0041-z

    Article  CAS  PubMed  Google Scholar 

  28. Fusakul Y, Aranyavalai T, Saensri P, Thiengwittayaporn S (2014) Low-level laser therapy with a wrist splint to treat carpal tunnel syndrome: a double-blinded randomized controlled trial. Lasers Med Sci 29(3):1279–1287. https://doi.org/10.1007/s10103-014-1527-2

    Article  PubMed  Google Scholar 

  29. Ezzati K, Laakso EL, Saberi A, YousefzadehChabok S, Nasiri E, BakhshayeshEghbali B (2020) A comparative study of the dose-dependent effects of low level and high intensity photobiomodulation (laser) therapy on pain and electrophysiological parameters in patients with carpal tunnel syndrome. Eur J Phys Rehabil Med 56(6):733–740. https://doi.org/10.23736/S1973-9087.19.05835-0

    Article  PubMed  Google Scholar 

  30. Lazovic M, Ilic-Stojanovic O, Kocic M, Zivkovic V, Hrkovic M, Radosavljevic N (2014) Placebo-controlled investigation of low-level laser therapy to treat carpal tunnel syndrome. Photomed Laser Surg 32(6):336–344. https://doi.org/10.1089/pho.2013.3563

    Article  PubMed  Google Scholar 

  31. Ozkan FU, Saygı EK, Senol S, Kapcı S, Aydeniz B, Aktaş İ, Gozke E (2015) New treatment alternatives in the ulnar neuropathy at the elbow: ultrasound and low-level laser therapy. Acta Neurol Belg 115(3):355–360. https://doi.org/10.1007/s13760-014-0377-9

    Article  PubMed  Google Scholar 

  32. Gigo-Benato D, Geuna S, De Castro RA et al (2004) Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci 19:57–65. https://doi.org/10.1007/s10103-004-0300-3

    Article  CAS  PubMed  Google Scholar 

  33. Ziago EKM, Fazan VPS, Iyomasa MM et al (2017) Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci 32:369–378. https://doi.org/10.1007/s10103-016-2126-1

    Article  PubMed  Google Scholar 

  34. Gigo-Benato D, Russo TL, Geuna S et al (2010) Electrical stimulation impairs early functional recovery and accentuates skeletal muscle atrophy after sciatic nerve crush injury in rats. Muscle Nerve 41:685–693. https://doi.org/10.1002/mus.21549

    Article  PubMed  Google Scholar 

  35. Andraus RAC, Maia LP, de Souza Lino AD et al (2017) LLLT actives MMP-2 and increases muscle mechanical resistance after nerve sciatic rat regeneration. Lasers Med Sci 32:771–778. https://doi.org/10.1007/s10103-017-2169-y

    Article  PubMed  Google Scholar 

  36. Gomes LEA, Dalmarco EM, André ES (2012) The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model. Photomed Laser Surg 30:642–647. https://doi.org/10.1089/pho.2012.3242

    Article  CAS  PubMed  Google Scholar 

  37. Hsieh Y-L, Chou L-W, Chang P-L et al (2012) Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α). J Comp Neurol 520:2903–2916. https://doi.org/10.1002/cne.23072

    Article  CAS  PubMed  Google Scholar 

  38. Dias FJ, Fazan VPS, Cury DP et al (2019) Growth factors expression and ultrastructural morphology after application of low-level laser and natural latex protein on a sciatic nerve crush-type injury. PLoS ONE 14:e0210211. https://doi.org/10.1371/journal.pone.0210211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dias FJ, Issa JPM, Coutinho-Netto J et al (2015) Morphometric and high resolution scanning electron microscopy analysis of low-level laser therapy and latex protein (Hevea brasiliensis) administration following a crush injury of the sciatic nerve in rats. J Neurol Sci 349:129–137. https://doi.org/10.1016/j.jns.2014.12.043

    Article  CAS  PubMed  Google Scholar 

  40. Shen CC, Yang YC, Liu BS (2011) Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats. Injury 42:803–813. https://doi.org/10.1016/j.injury.2011.02.005

    Article  PubMed  Google Scholar 

  41. Shen C-C, Yang Y-C, Huang T-B et al (2013) Low-level laser-accelerated peripheral nerve regeneration within a reinforced nerve conduit across a large gap of the transected sciatic nerve in rats. Evid Based Complement Altern Med 2013:1–12. https://doi.org/10.1155/2013/175629

    Article  Google Scholar 

Download references

Acknowledgements

Consejo Nacional de Ciencia y Tecnología (CONACYT) is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU: 735340). The listed author(s) thankfully acknowledge the literature access provided by their respective institutions/ organizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Renato Nery Soriano.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

None.

Informed consent statement

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniz, X.C., de Assis, A.C.C., de Oliveira, B.S.A. et al. Efficacy of low-level laser therapy in nerve injury repair—a new era in therapeutic agents and regenerative treatments. Neurol Sci 42, 4029–4043 (2021). https://doi.org/10.1007/s10072-021-05478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05478-7

Keywords

Navigation