Skip to main content

Advertisement

Log in

Impact of dietary polyphenols on neuroinflammation-associated disorders

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders like Alzheimer’s, Parkinson’s, and associated dementia typically originate with altered protein folding and aggregation of their β structures in the neurons. This self-aggregation leads to glial activation in the brain, causing neuroinflammation and leads to neuronal death. According to statistics provided by WHO, there are around 50 million people with dementia worldwide and every year, 10 million more cases are projected to increase. Also, around 5–8 percentage of people who are aged above 60 globally has dementia or associated disorders. Over 82 million in 2030 and 152 in 2050 are expected to have dementia. Most of these patients fall into low–middle-income countries which makes it even more essential to find an affordable and effective treatment method. Polyphenols of different origin are studied for their potential role as anti-neuro-inflammatory molecules. This review would summarize recent advances in three widely researched dietary polyphenols projected as potential therapeutic agents for disorders like Alzheimer’s, Parkinson’s, etc. They are Resveratrol, Catechins, and Tannins. The review would discuss the recent advances and challenges in using these polyphenols using specific examples as potential therapeutic agents against neuroinflammation associated disorders.

Graphical abstract

An abstract of neuroinflammation-associated events and the effects by selected polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

References

  1. Pounis G, Di Castelnuovo A, Bonaccio M et al (2016) Flavonoid and lignan intake in a Mediterranean population: proposal for a holistic approach in polyphenol dietary analysis, the Moli-sani Study. Eur J Clin Nutr 70:338–345. https://doi.org/10.1038/ejcn.2015.178

    Article  CAS  PubMed  Google Scholar 

  2. Godos J, Rapisarda G, Marventano S, Galvano F, Mistretta A, Grosso G (2017) Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy. NFS J 8:1–7. https://doi.org/10.1016/j.nfs.2017.06.001

    Article  Google Scholar 

  3. Nascimento-Souza MA, de Paiva PG, Pérez-Jiménez J, do Carmo Castro Franceschini S, Ribeiro AQ (2018) Estimated dietary intake and major food sources of polyphenols in elderly of Viçosa, Brazil: a population-based study. Eur J Nutr 57:617–627. https://doi.org/10.1007/s00394-016-1348-0

    Article  CAS  PubMed  Google Scholar 

  4. Średnicka-Tober D, Ponder A, Hallmann E, Głowacka A, Rozpara E (2019) The profile and content of polyphenols and carotenoids in local and commercial sweet cherry fruits (Prunus avium L.) and their antioxidant activity in vitro. Antioxidants 8. 8. https://doi.org/10.3390/antiox8110534

  5. Herbello-Hermelo P, Lamas JP, Lores M, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A (2018) Polyphenol bioavailability in nuts and seeds by an in vitro dialyzability approach. Food Chem 254:20–25. https://doi.org/10.1016/j.foodchem.2018.01.183

    Article  CAS  PubMed  Google Scholar 

  6. Pycia K, Kapusta I, Jaworska G (2019) Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 24:. https://doi.org/10.3390/molecules24162936

  7. Sun X, Cheng X, Zhang J, Ju Y, Que Z, Liao X, Lao F, Fang Y, Ma T (2020) Letting wine polyphenols functional: Estimation of wine polyphenols bioaccessibility under different drinking amount and drinking patterns. Food Res Int 127:108704. https://doi.org/10.1016/j.foodres.2019.108704

    Article  CAS  PubMed  Google Scholar 

  8. Rocchetti G, Chiodelli G, Giuberti G, Ghisoni S, Baccolo G, Blasi F, Montesano D, Trevisan M, Lucini L (2018) UHPLC-ESI-QTOF-MS profile of polyphenols in Goji berries (Lycium barbarum L.) and its dynamics during in vitro gastrointestinal digestion and fermentation. J Funct Foods 40:564–572. https://doi.org/10.1016/j.jff.2017.11.042

    Article  CAS  Google Scholar 

  9. Majidinia M, Bishayee A, Yousefi B (2019) Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 82:102679. https://doi.org/10.1016/j.dnarep.2019.102679

    Article  CAS  Google Scholar 

  10. Hilbig J, Policarpi P de B, Grinevicius VMA de S, et al (2018) Aqueous extract from pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell show activity against breast cancer cell line MCF-7 and Ehrlich ascites tumor in Balb-C mice. J Ethnopharmacol 211:256–266. https://doi.org/10.1016/j.jep.2017.08.012

  11. Martino E, Vuoso DC, D’Angelo S, Mele L, D’Onofrio N, Porcelli M, Cacciapuoti G (2019) Annurca apple polyphenol extract selectively kills MDA-MB-231 cells through ROS generation, sustained JNK activation and cell growth and survival inhibition. Sci Rep 9:1–15. https://doi.org/10.1038/s41598-019-49631-x

    Article  CAS  Google Scholar 

  12. Scafuri B, Marabotti A, Carbone V, Minasi P, Dotolo S, Facchiano A (2016) A theoretical study on predicted protein targets of apple polyphenols and possible mechanisms of chemoprevention in colorectal cancer. Sci Rep 6:32516. https://doi.org/10.1038/srep32516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alimohammadi M, Lahiani MH, McGehee D, Khodakovskaya M (2017) Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells. PLoS One 12:1–21. https://doi.org/10.1371/journal.pone.0175778

    Article  CAS  Google Scholar 

  14. Blumberg JB, Vita JA, Oliver Chen CY (2015) Concord grape juice polyphenols and cardiovascular risk factors: Dose-response relationships. Nutrients 7:10032–10052. https://doi.org/10.3390/nu7125519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gómez-Guzmán M, Rodríguez-Nogales A, Algieri F, Gálvez J (2018) Potential role of seaweed polyphenols in cardiovascular-associated disorders. Mar Drugs 16:1–21. https://doi.org/10.3390/md16080250

    Article  CAS  Google Scholar 

  16. Miranda AM, Steluti J, Fisberg RM, Marchioni DM (2017) Association between coffee consumption and its polyphenols with cardiovascular risk factors: A population-based study. Nutrients 9:9. https://doi.org/10.3390/nu9030276

    Article  CAS  Google Scholar 

  17. Miranda AM, Steluti J, Fisberg RM, Marchioni DM (2016) Association between polyphenol intake and hypertension in adults and older adults: A population-based study in brazil. PLoS One 11:1–14. https://doi.org/10.1371/journal.pone.0165791

    Article  CAS  Google Scholar 

  18. Alves JL d B, de Sousa VP, Neto MPC et al (2016) New insights on the use of dietary polyphenols or probiotics for the management of arterial hypertension. Front Physiol 7. https://doi.org/10.3389/fphys.2016.00448

  19. Pons Z, Margalef M, Bravo FI, Arola-Arnal A, Muguerza B (2017) Chronic administration of grape-seed polyphenols attenuates the development of hypertension and improves other cardiometabolic risk factors associated with the metabolic syndrome in cafeteria diet-fed rats. Br J Nutr 117:200–208. https://doi.org/10.1017/S0007114516004426

    Article  CAS  PubMed  Google Scholar 

  20. Tian J, Wu X, Zhang M, Zhou Z, Liu Y (2018) Comparative study on the effects of apple peel polyphenols and apple flesh polyphenols on cardiovascular risk factors in mice. Clin Exp Hypertens 40:65–72. https://doi.org/10.1080/10641963.2017.1313851

    Article  CAS  PubMed  Google Scholar 

  21. Striegel L, Kang B, Pilkenton SJ, Rychlik M, Apostolidis E (2015) Effect of Black Tea and Black Tea Pomace Polyphenols on α-Glucosidase and α-Amylase Inhibition, Relevant to Type 2 Diabetes Prevention. Front Nutr 2:1–6. https://doi.org/10.3389/fnut.2015.00003

    Article  CAS  Google Scholar 

  22. Lin G, Liu X, Yan X, Liu D, Yang C, Liu B, Huang Y, Zhao C (2019) Role of green macroalgae Enteromorpha prolifera polyphenols in the modulation of gene expression and intestinal microflora profiles in type 2 diabetic mice. Int J Mol Sci 20:1–11. https://doi.org/10.3390/ijms20010025

    Article  CAS  Google Scholar 

  23. Rocha L, Neves D, Valentão P, Andrade PB, Videira RA (2020) Adding value to polyvinylpolypyrrolidone winery residue: A resource of polyphenols with neuroprotective effects and ability to modulate type 2 diabetes-relevant enzymes. Food Chem 329:127168. https://doi.org/10.1016/j.foodchem.2020.127168

    Article  CAS  PubMed  Google Scholar 

  24. Maerten C, Lopez L, Lupattelli P, Rydzek G, Pronkin S, Schaaf P, Jierry L, Boulmedais F (2017) Electrotriggered Confined Self-assembly of Metal-Polyphenol Nanocoatings Using a Morphogenic Approach. Chem Mater 29:9668–9679. https://doi.org/10.1021/acs.chemmater.7b03349

    Article  CAS  Google Scholar 

  25. Payra D, Yamauchi Y, Samitsu S, Naito M (2018) Natural Polyphenol Surfactants: Solvent-Mediated Spherical Nanocontainers and Their Stimuli-Responsive Release of Molecular Payloads. Chem Mater 30:8025–8033. https://doi.org/10.1021/acs.chemmater.8b03741

    Article  CAS  Google Scholar 

  26. Rahim MA, Ejima H, Cho KL, Kempe K, Müllner M, Best JP, Caruso F (2014) Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem Mater 26:1645–1653. https://doi.org/10.1021/cm403903m

    Article  CAS  Google Scholar 

  27. Godos J, Marventano S, Mistretta A, Galvano F, Grosso G (2017) Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int J Food Sci Nutr 68:750–756. https://doi.org/10.1080/09637486.2017.1285870

    Article  CAS  PubMed  Google Scholar 

  28. Hornedo-Ortega R, Cerezo AB, de Pablos RM, Krisa S, Richard T, García-Parrilla MC, Troncoso AM (2018) Phenolic compounds characteristic of the mediterranean diet in mitigating microglia-mediated neuroinflammation. Front Cell Neurosci 12:1–20. https://doi.org/10.3389/fncel.2018.00373

    Article  CAS  Google Scholar 

  29. Dal-Pan A, Dudonné S, Bourassa P et al (2017) Cognitive-Enhancing Effects of a Polyphenols-Rich Extract from Fruits without Changes in Neuropathology in an Animal Model of Alzheimer’s Disease. J Alzheimers Dis 55:115–135. https://doi.org/10.3233/JAD-160281

    Article  CAS  PubMed  Google Scholar 

  30. Rocchetti G, Chiodelli G, Giuberti G, Masoero F, Trevisan M, Lucini L (2017) Evaluation of phenolic profile and antioxidant capacity in gluten-free flours. Food Chem 228:367–373. https://doi.org/10.1016/j.foodchem.2017.01.142

    Article  CAS  PubMed  Google Scholar 

  31. Kim SS, Oh OJ, Min HY, Park EJ, Kim Y, Park HJ, Nam Han Y, Lee SK (2003) Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci 73:337–348. https://doi.org/10.1016/S0024-3205(03)00288-1

    Article  CAS  PubMed  Google Scholar 

  32. Liu C, Shen W, Li B, Li T, Chang H, Cheng Y (2019) Natural Polyphenols Augment Cytosolic Protein Delivery by a Functional Polymer. Chem Mater 31:1956–1965. https://doi.org/10.1021/acs.chemmater.8b04672

    Article  CAS  Google Scholar 

  33. Chan EWC, Wong CW, Tan YH et al (2019) Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J Appl Pharm Sci 9:124–129. https://doi.org/10.7324/JAPS.2019.90717

    Article  CAS  Google Scholar 

  34. Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, Song R, Wang WM, Xiao CJ, Lu D (2012) Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 7:7. https://doi.org/10.1371/journal.pone.0032195

    Article  CAS  Google Scholar 

  35. Paolicelli RC, Bolasco G, Pagani F, et al (2011) Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science (80- ) 333:1456–1459

  36. Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia Shape Adult Hippocampal Neurogenesis through Apoptosis-Coupled Phagocytosis. Cell Stem Cell 7:483–495. https://doi.org/10.1016/j.stem.2010.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adriano Aguzzi1, Ben A. Barres and MLB (2015) Microglia: Scapegoat, Saboteur, or Something Else? 339:156–161. https://doi.org/10.1126/science.1227901.Microglia

  38. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B (2009) Microglia Protect Neurons against Ischemia by Synthesis of Tumor Necrosis Factor. J Neurosci 29:1319–1330. https://doi.org/10.1523/JNEUROSCI.5505-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Staszewski O, Prinz M (2014) Glial epigenetics in neuroinflammation and neurodegeneration. Cell Tissue Res 356:609–616. https://doi.org/10.1007/s00441-014-1815-y

    Article  CAS  PubMed  Google Scholar 

  40. Boche D, Perry VH, Nicoll JAR (2013) Review: Activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18. https://doi.org/10.1111/nan.12011

    Article  CAS  PubMed  Google Scholar 

  41. Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18:759–772. https://doi.org/10.1038/s41577-018-0051-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong S, Beja-glasser VF, Nfonoyim BM, et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science (80- ) 8373:1–9

  43. Maezawa I, Zimin PI, Wulff H, Jin L (2011) Amyloid- ␤ Protein Oligomer at Low Nanomolar Concentrations Activates Microglia and Induces Microglial Neurotoxicity * □. J Biol Chem 286:3693–3706. https://doi.org/10.1074/jbc.M110.135244

    Article  CAS  PubMed  Google Scholar 

  44. Moore Z, Taylor JM, Crack PJ (2019) The involvement of microglia in Alzheimer’s disease: a new dog in the fight. Br J Pharmacol 176:3533–3543. https://doi.org/10.1111/bph.14546

    Article  CAS  PubMed  Google Scholar 

  45. Rojanathammanee L, Murphy EJ, Combs CK (2011) Expression of mutant alpha-synuclein modulates microglial phenotype in vitro. J Neuroinflammation 8:44. https://doi.org/10.1186/1742-2094-8-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Theodore S, Shuwen Cao B, McLean PJ, P, Standaert DG, MD P (2009) Targeted Overexpression of Human Alpha-Synuclein Triggers Microglial Activation and an Adaptive Immune Response in a Mouse Model of Parkinson Disease. J Neuropathol Exp Neurol 67:1149–1158. https://doi.org/10.1097/NEN.0b013e31818e5e99.Targeted

  47. Liaoa B, Zhao W, Beers DR et al (2014) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237:147–152. https://doi.org/10.1016/j.expneurol.2012.06.011.Transformation

    Article  Google Scholar 

  48. Lewis KE, Rasmussen AL, Bennett W, King A, West AK, Chung RS, Chuah M (2014) Microglia and motor neurons during disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis : changes in arginase1 and inducible nitric oxide synthase. J Neuroinflammation 11:1–18. https://doi.org/10.1186/1742-2094-11-55

    Article  CAS  Google Scholar 

  49. Boillée S, Yamanaka K, Lobsiger CS et al (2012) Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia. Science (80- ) 1389. 312:1389–1392. https://doi.org/10.1126/science.1123511

  50. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of ‘ homeostatic ’ microglia and patterns of their activation in active multiple sclerosis. BRAIN A J Neurol 140:1900–1913. https://doi.org/10.1093/brain/awx113

    Article  Google Scholar 

  51. Di Filippo M, De Iure A, Giampà C et al (2016) Persistent activation of microglia and NADPH oxidase drive hippocampal dysfunction in experimental multiple sclerosis. Sci Rep 6:1–16. https://doi.org/10.1038/srep20926

    Article  CAS  Google Scholar 

  52. Simão F, Matté A, Pagnussat AS, Netto CA, Salbego CG (2012) Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways. Eur J Neurosci 36:2899–2905. https://doi.org/10.1111/j.1460-9568.2012.08229.x

    Article  PubMed  Google Scholar 

  53. Akyuva Y, Nazıroğlu M (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep 10:1–16. https://doi.org/10.1038/s41598-020-63577-5

    Article  CAS  Google Scholar 

  54. Wang P, Sang S (2018) Metabolism and pharmacokinetics of Resveratrol and pterostilbene. BioFactors 44:16–25. https://doi.org/10.1002/biof.1410

    Article  CAS  PubMed  Google Scholar 

  55. Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, Turner RS (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 14:1–10. https://doi.org/10.1186/s12974-016-0779-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yadikar H, Torres I, Aiello G, Kurup M, Yang Z, Lin F, Kobeissy F, Yost R, Wang KK (2020) Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One 15:e0224952. https://doi.org/10.1371/journal.pone.0224952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7:1–10. https://doi.org/10.3389/fnmol.2014.00016

    Article  CAS  Google Scholar 

  58. Winter J, Basilicata MF, Stemmler MP, Krauss S (2016) The MID1 protein is a central player during development and in disease. Front Biosci - Landmark 21:664–682. https://doi.org/10.2741/4413

    Article  CAS  Google Scholar 

  59. Schweiger S, Matthes F, Posey K, Kickstein E, Weber S, Hettich MM, Pfurtscheller S, Ehninger D, Schneider R, Krauß S (2017) Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-12974-4

    Article  CAS  Google Scholar 

  60. Feng L, Zhang L (2019) Resveratrol Suppresses Aβ-Induced Microglial Activation Through the TXNIP/TRX/NLRP3 Signaling Pathway. DNA Cell Biol 38:874–879. https://doi.org/10.1089/dna.2018.4308

    Article  CAS  PubMed  Google Scholar 

  61. Jhang KA, Park JS, Kim HS, Chong YH (2017) Resveratrol Ameliorates Tau Hyperphosphorylation at Ser396 Site and Oxidative Damage in Rat Hippocampal Slices Exposed to Vanadate: Implication of ERK1/2 and GSK-3β Signaling Cascades. J Agric Food Chem 65:9626–9634. https://doi.org/10.1021/acs.jafc.7b03252

    Article  CAS  PubMed  Google Scholar 

  62. Wang R, Zhang Y, Li J, Zhang C (2017) Resveratrol ameliorates spatial learning memory impairment induced by Aβ1–42 in rats. Neuroscience 344:39–47. https://doi.org/10.1016/j.neuroscience.2016.08.051

    Article  CAS  PubMed  Google Scholar 

  63. Quadros Gomes BA, Bastos Silva JP, Rodrigues Romeiro CF et al (2018) Neuroprotective mechanisms of Resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid Med Cell Longev 2018. 2018:1–15. https://doi.org/10.1155/2018/8152373

  64. Shati AA, Alfaifi MY (2019) Trans-Resveratrol Inhibits Tau Phosphorylation in the Brains of Control and Cadmium Chloride-Treated Rats by Activating PP2A and PI3K/Akt Induced-Inhibition of GSK3β. Neurochem Res 44:357–373. https://doi.org/10.1007/s11064-018-2683-8

    Article  CAS  PubMed  Google Scholar 

  65. Saavedra JM (2016) Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer’s Disease. Cell Mol Neurobiol 36:259–279. https://doi.org/10.1007/s10571-015-0327-y

    Article  CAS  PubMed  Google Scholar 

  66. Gebre AK, Altaye BM, Atey TM, Tuem KB, Berhe DF (2018) Targeting Renin-Angiotensin System Against Alzheimer’s disease. Front Pharmacol 9:1–11. https://doi.org/10.3389/fphar.2018.00440

    Article  CAS  Google Scholar 

  67. Lin Y-T, Wu Y-C, Sun G-C, Ho CY, Wong TY, Lin CH, Chen HH, Yeh TC, Li CJ, Tseng CJ, Cheng PW (2018) Effect of Resveratrol on Reactive Oxygen Species-Induced Cognitive Impairment in Rats with Angiotensin II-Induced Early Alzheimer’s Disease †. J Clin Med 7:329. https://doi.org/10.3390/jcm7100329

    Article  CAS  PubMed Central  Google Scholar 

  68. Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, Annese T, di Paola M, Dell'Aquila C, de Mari M, Ferranini E, Bonifati V, Pacelli C, Cocco T (2014) Effect of Resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta Mol basis Dis 1842:902–915. https://doi.org/10.1016/j.bbadis.2014.02.010

    Article  CAS  Google Scholar 

  69. Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, Liu RT (2018) Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct 9:6414–6426. https://doi.org/10.1039/C8FO00964C

    Article  CAS  PubMed  Google Scholar 

  70. Davis BM, Rall GF, MJS (2017) Glutamate and GABA imbalanve following traumatic brain injury. Physiol Behav 176:139–148. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  Google Scholar 

  71. Mancinelli R, Carpino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A, Facchiano A, Ziparo E, Giampietri C (2017) Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxid Med Cell Longev 2017. 2017:1–14. https://doi.org/10.1155/2017/4629495

  72. Lin CJ, Chen TH, Yang LY, Shih CM (2014) Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 5:e1147–e1111. https://doi.org/10.1038/cddis.2014.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C (2013) Lipid-core nanocapsules improve the effects of Resveratrol against Aβ-induced neuroinflammation. J Biomed Nanotechnol 9:2086–2104. https://doi.org/10.1166/jbn.2013.1709

    Article  CAS  PubMed  Google Scholar 

  74. Lu X, Ji C, Xu H, Li X, Ding H, Ye M, Zhu Z, Ding D, Jiang X, Ding X, Guo X (2009) Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. Int J Pharm 375:89–96. https://doi.org/10.1016/j.ijpharm.2009.03.021

    Article  CAS  PubMed  Google Scholar 

  75. Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA (2018) Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 9:1–19. https://doi.org/10.3389/fphar.2018.01261

    Article  CAS  Google Scholar 

  76. Loureiro JA, Andrade S, Duarte A, Neves A, Queiroz J, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho M, Pereira M (2017) Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 22:22. https://doi.org/10.3390/molecules22020277

    Article  CAS  Google Scholar 

  77. Bae J, Kim N, Shin Y, Kim SY, Kim YJ (2020) Activity of Catechins and their applications. Biomed Dermatology 4:1–10. https://doi.org/10.1186/s41702-020-0057-8

    Article  Google Scholar 

  78. Farkhondeh T, Pourbagher-Shahri AM, Ashrafizadeh M, Folgado SL, Rajabpour-Sanati A, Khazdair MR, Samarghandian S (2020) Green tea Catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen Res 15:1792–1798. https://doi.org/10.4103/1673-5374.280300

    Article  PubMed  PubMed Central  Google Scholar 

  79. Du X, Yu J, Sun X et al (2018) Impact of epigallocatechin-3-gallate on expression of nuclear factor erythroid 2-related factor 2 and γ-glutamyl cysteine synthetase genes in Oxidative stress-induced mouse renal tubular epithelial cells. Mol Med Rep 17:7952–7958. https://doi.org/10.3892/mmr.2018.8798

    Article  CAS  PubMed  Google Scholar 

  80. Khan MA, Alam Q, Haque A, Ashafaq M, Khan MJ, Ashraf GM, Ahmad M (2018) Current Progress on Peroxisome Proliferator-activated Receptor Gamma Agonist as an Emerging Therapeutic Approach for the Treatment of Alzheimer’s Disease: An Update. Curr Neuropharmacol 17:232–246. https://doi.org/10.2174/1570159x16666180828100002

    Article  CAS  Google Scholar 

  81. Santamaría-del Ángel D, Labra-Ruíz NA, García-Cruz ME, Calderón-Guzmán D, Valenzuela-Peraza A, Juárez-Olguín H (2016) Comparative effects of catechin, epicatechin and N-Ω-nitroarginine on quinolinic acid-induced oxidative stress in rat striatum slices. Biomed Pharmacother 78:210–215. https://doi.org/10.1016/j.biopha.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  82. Cheruku SP, Ramalingayya GV, Chamallamudi MR, Biswas S, Nandakumar K, Nampoothiri M, Gourishetti K, Kumar N (2018) Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology 70:245–259. https://doi.org/10.1007/s10616-017-0138-8

    Article  CAS  PubMed  Google Scholar 

  83. Janle EM, Morré DM, Morré DJ, Zhou Q, Zhu Y (2008) Pharmacokinetics of Green Tea Catechins in Extract and Sustained-Release Preparations. J Diet Suppl 5:248–263. https://doi.org/10.1080/19390210802414279

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pervin M, Unno K, Nakagawa A, Takahashi Y, Iguchi K, Yamamoto H, Hoshino M, Hara A, Takagaki A, Nanjo F, Minami A, Imai S, Nakamura Y (2017) Blood brain barrier permeability of (−)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice. Biochem Biophys Reports 9:180–186. https://doi.org/10.1016/j.bbrep.2016.12.012

    Article  Google Scholar 

  85. Cruz-González T, Cortez-Torres E, Perez-Severiano F, Espinosa B, Guevara J, Perez-Benitez A, Melendez FJ, Díaz A, Ramírez RE (2016) Antioxidative stress effect of epicatechin and catechin induced by Aβ25–35 in rats and use of the electrostatic potential and the Fukui function as a tool to elucidate specific sites of interaction. Neuropeptides 59:89–95. https://doi.org/10.1016/j.npep.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  86. Bitu Pinto N, Da Silva AB, Neves KRT et al (2015) Neuroprotective Properties of the Standardized Extract from Camellia sinensis (Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson’s Disease. Evidence-based Complement Altern Med 2015:1–12. https://doi.org/10.1155/2015/161092

    Article  Google Scholar 

  87. Azam F, Mohamed N, Alhussen F (2015) Molecular interaction studies of green tea Catechins as multitarget drug candidates for the treatment of Parkinsons disease: Computational and structural insights. Netw Comput Neural Syst 26:97–115. https://doi.org/10.3109/0954898X.2016.1146416

    Article  Google Scholar 

  88. Jiang Z, Zhang J, Cai Y, Huang J, You L (2017) Catechin attenuates traumatic brain injury-induced blood–brain barrier damage and improves longer-term neurological outcomes in rats. Exp Physiol 102:1269–1277. https://doi.org/10.1113/EP086520

    Article  CAS  PubMed  Google Scholar 

  89. Vespa PM (2016) Brain Hypoxia and Ischemia After Traumatic Brain Injury: Is Oxygen the Right Metabolic Target? JAMA Neurol 73:504–505. https://doi.org/10.1001/jamaneurol.2016.0251

    Article  PubMed  Google Scholar 

  90. Veenith TV, Carter EL, Geeraerts T, Grossac J, Newcombe VFJ, Outtrim J, Gee GS, Lupson V, Smith R, Aigbirhio FI, Fryer TD, Hong YT, Menon DK, Coles JP (2016) Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury. JAMA Neurol 73:542–550. https://doi.org/10.1001/jamaneurol.2016.0091

    Article  PubMed  Google Scholar 

  91. Desai M, Morris NA (2018) Prolonged Post-Traumatic Vasospasm Resulting in Delayed Cerebral Ischemia After Mild Traumatic Brain Injury. Neurocrit Care 29:512–518. https://doi.org/10.1007/s12028-018-0542-8

    Article  PubMed  Google Scholar 

  92. Chen CM, Wu CT, Yang TH, Chang YA, Sheu ML, Liu SH (2016) Green Tea Catechin Prevents Hypoxia/Reperfusion-Evoked Oxidative Stress-Regulated Autophagy-Activated Apoptosis and Cell Death in Microglial Cells. J Agric Food Chem 64:4078–4085. https://doi.org/10.1021/acs.jafc.6b01513

    Article  CAS  PubMed  Google Scholar 

  93. Jeong KH, Cho SY, Hong YD, Chung JO, Kim KS, Shim SM (2018) Transport of gallocatechin gallate and catechin gallate in high-temperature-processed green tea extract from gastrointestinal tract to brain by an in vitro bio-mimic model system coupled with sequential cell cultures. J Funct Foods 47:83–90. https://doi.org/10.1016/j.jff.2018.05.028

    Article  CAS  Google Scholar 

  94. Suganthy N, Devi KP (2016) Protective effect of catechin rich extract of Rhizophora mucronata against β-amyloid-induced toxicity in PC12 cells. J Appl Biomed 14:137–146. https://doi.org/10.1016/j.jab.2015.10.003

    Article  Google Scholar 

  95. Suganthy N, Pandima Devi K (2016) In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. Pharm Biol 54:118–129. https://doi.org/10.3109/13880209.2015.1017886

    Article  CAS  PubMed  Google Scholar 

  96. Okello EJ, Mather J (2020) Comparative kinetics of acetyl-and butyryl-cholinesterase inhibition by green tea Catechins|relevance to the symptomatic treatment of alzheimer’s disease. Nutrients 12. https://doi.org/10.3390/nu12041090

  97. Prasad SN, Bharath MMS, Muralidhara (2016) Neurorestorative effects of eugenol, a spice bioactive: Evidence in cell model and its efficacy as an intervention molecule to abrogate brain oxidative dysfunctions in the streptozotocin diabetic rat. Neurochem Int 95:24–36. https://doi.org/10.1016/j.neuint.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  98. Carmichael OT, Pillai S, Shankapal P, McLellan A, Kay DG, Gold BT, Keller JN (2018) A Combination of Essential Fatty Acids, Panax Ginseng Extract, and Green Tea Catechins Modifies Brain fMRI Signals in Healthy Older Adults. J Nutr Health Aging 22:837–846. https://doi.org/10.1007/s12603-018-1028-2

    Article  CAS  PubMed  Google Scholar 

  99. Gheysarzadeh A, Yazdanparast R (2014) STAT5 Reactivation by Catechin Modulates H2O2-Induced Apoptosis Through miR-182/FOXO1 Pathway in SK-N-MC Cells. Cell Biochem Biophys 71:649–656. https://doi.org/10.1007/s12013-014-0244-6

    Article  CAS  Google Scholar 

  100. Yamamoto N, Shibata M, Ishikuro R, Tanida M, Taniguchi Y, Ikeda-Matsuo Y, Sobue K (2017) Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neuroscience 362:70–78. https://doi.org/10.1016/j.neuroscience.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  101. Mendes D, Oliveira MM, Moreira PI, Coutinho J, Nunes FM, Pereira DM, Valentão P, Andrade PB, Videira RA (2018) Beneficial effects of white wine polyphenols-enriched diet on Alzheimer’s disease-like pathology. J Nutr Biochem 55:165–177. https://doi.org/10.1016/j.jnutbio.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  102. Bae HJ, Kim J, Jeon SJ, Kim J, Goo N, Jeong Y, Cho K, Cai M, Jung SY, Kwon KJ, Ryu JH (2020) Green tea extract containing enhanced levels of epimerized Catechins attenuates scopolamine-induced memory impairment in mice. J Ethnopharmacol 258:112923. https://doi.org/10.1016/j.jep.2020.112923

    Article  CAS  PubMed  Google Scholar 

  103. He J, Xu L, Yang L, Sun C (2019) Anti-oxidative effects of Catechins and theaflavins on glutamate-induced HT22 cell damage. RSC Adv 9:21418–21428. https://doi.org/10.1039/c9ra02721a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen M, Wang T, Yue F, Li X, Wang P, Li Y, Chan P, Yu S (2015) Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys. Neuroscience 286:383–392. https://doi.org/10.1016/j.neuroscience.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  105. Xu Q, Langley M, Kanthasamy AG, Reddy MB (2017) Epigallocatechin Gallate has a neurorescue effect in a mouse model of Parkinson disease. J Nutr 147:1926–1931. https://doi.org/10.3945/jn.117.255034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou T, Zhu M, Liang Z (2018) (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Mol Med Rep 17:4883–4888. https://doi.org/10.3892/mmr.2018.8470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cheng T, Wang W, Li Q, Han X, Xing J, Qi C, Lan X, Wan J, Potts A, Guan F, Wang J (2016) Cerebroprotection of flavanol (-)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. Free Radic Biol Med 92:15–28. https://doi.org/10.1016/j.freeradbiomed.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  108. Wu Y, Cui J (2020) (-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model. Naunyn Schmiedeberg's Arch Pharmacol 393:2209–2220. https://doi.org/10.1007/s00210-020-01841-1

    Article  CAS  Google Scholar 

  109. Zhang L, Kosaraju SL (2007) Biopolymeric delivery system for controlled release of polyphenolic antioxidants. Eur Polym J 43:2956–2966. https://doi.org/10.1016/j.eurpolymj.2007.04.033

    Article  CAS  Google Scholar 

  110. Ishii S, Kitazawa H, Mori T, Kirino A, Nakamura S, Osaki N, Shimotoyodome A, Tamai I (2019) Identification of the Catechin Uptake Transporter Responsible for Intestinal Absorption of Epigallocatechin Gallate in Mice. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-47214-4

    Article  CAS  Google Scholar 

  111. Ahmad M, Mudgil P, Gani A, Hamed F, Masoodi FA, Maqsood S (2019) Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem 270:95–104. https://doi.org/10.1016/j.foodchem.2018.07.024

    Article  CAS  PubMed  Google Scholar 

  112. Mandal S, Debnath K, Jana NR, Jana NR (2020) Trehalose-Conjugated, Catechin-Loaded Polylactide Nanoparticles for Improved Neuroprotection against Intracellular Polyglutamine Aggregates. Biomacromolecules 21:1578–1586. https://doi.org/10.1021/acs.biomac.0c00143

    Article  CAS  PubMed  Google Scholar 

  113. Samanta A, Bandyopadhyay B (2016) Formulation of Catechin Hydrate Nanocapsule and Study of its Bioavailability. Med Chem (Los Angeles) 6:6. https://doi.org/10.4172/2161-0444.1000376

    Article  CAS  Google Scholar 

  114. Wu X, Gu L, Prior RL, McKay S (2004) Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes , Aronia , and Sambucus and Their Antioxidant Capacity. J Agric Food Chem 52:7846–7856. https://doi.org/10.1021/jf0486850

    Article  CAS  PubMed  Google Scholar 

  115. Kumari M (2015) Screening of Potential Sources of Tannin and Its Therapeutic Application. Int J Nutr Food Sci 4:26. https://doi.org/10.11648/j.ijnfs.s.2015040201.15

    Article  Google Scholar 

  116. Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. Biomed Res Int. https://doi.org/10.1155/2015/905215, 2015, 1, 18

  117. Gerzson MFB, Bona NP, Soares MSP, Teixeira FC, Rahmeier FL, Carvalho FB, da Cruz Fernandes M, Onzi G, Lenz G, Gonçales RA, Spanevello RM, Stefanello FM (2020) Tannic Acid Ameliorates STZ-Induced Alzheimer’s Disease-Like Impairment of Memory, Neuroinflammation, Neuronal Death and Modulates Akt Expression. Neurotox Res 37:1009–1017. https://doi.org/10.1007/s12640-020-00167-3

    Article  CAS  PubMed  Google Scholar 

  118. Olajide OA, Kumar A, Velagapudi R, Okorji UP, Fiebich BL (2014) Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol Nutr Food Res 58:1843–1851. https://doi.org/10.1002/mnfr.201400163

    Article  CAS  PubMed  Google Scholar 

  119. Wu Y, Zhong L, Yu Z, Qi J (2019) Anti-neuroinflammatory effects of tannic acid against lipopolysaccharide-induced BV2 microglial cells via inhibition of NF-κB activation. Drug Dev Res 80:262–268. https://doi.org/10.1002/ddr.21490

    Article  CAS  PubMed  Google Scholar 

  120. Mori T, Rezai-Zadeh K, Koyama N, Arendash GW, Yamaguchi H, Kakuda N, Horikoshi-Sakuraba Y, Tan J, Town T (2012) Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem 287:6912–6927. https://doi.org/10.1074/jbc.M111.294025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zengin G, Locatelli M, Carradori S et al (2016) Total phenolics, flavonoids, condensed Tannins content of eight centaurea species and their broad inhibitory activities against cholinesterase, tyrosinase, α-amylase and α-glucosidase. Not Bot Horti Agrobot Cluj-Napoca 44:195–200. https://doi.org/10.15835/nbha44110259

    Article  CAS  Google Scholar 

  122. Park JH, Joo HS, Yoo KY, Shin BN, Kim IH, Lee CH, Choi JH, Byun K, Lee B, Lim SS, kim MJ, Won MH (2011) Extract from terminalia chebula seeds protect against experimental ischemic neuronal damage via maintaining SODs and BDNF levels. Neurochem Res 36:2043–2050. https://doi.org/10.1007/s11064-011-0528-9

    Article  CAS  PubMed  Google Scholar 

  123. Dhivya PS, Sobiya M, Selvamani P, Latha S (2014) An approach to alzheimer’s disease treatment with cholinesterase inhibitory activity from various plant species. Int J PharmTech Res 6:1450–1468

    Google Scholar 

  124. Afshari AR, Sadeghnia HR, Mollazadeh H (2016) A Review on Potential Mechanisms of Terminalia chebula in AD.pdf. 2016:

  125. Braidy N, Jugder B-E, Poljak A, Jayasena T, Nabavi SM, Sachdev P, Grant R (2017) Molecular Targets of Tannic Acid in Alzheimer’s Disease. Curr Alzheimer Res 14:861–869. https://doi.org/10.2174/1567205014666170206163158

    Article  CAS  PubMed  Google Scholar 

  126. Sylla T, Pouységu L, Da Costa G et al (2015) GalloTannins and Tannic Acid: First Chemical Syntheses and In Vitro Inhibitory Activity on Alzheimer’s Amyloid β-Peptide Aggregation. Angew Chem Int Ed Eng 54:8217–8221. https://doi.org/10.1002/anie.201411606

    Article  CAS  Google Scholar 

  127. Xianchu L, Ming L, Xiangbin L, Lan Z (2018) Grape seed proanthocyanidin extract supplementation affects exhaustive exercise-induced fatigue in mice. Food Nutr Res 62:1–7. https://doi.org/10.29219/fnr.v62.1421

    Article  CAS  Google Scholar 

  128. Calou I, Bandeira MA, Aguiar-Galvão W, Cerqueira G, Siqueira R, Neves KR, Brito GA, Viana G (2014) Neuroprotective properties of a standardized extract from Myracrodruon urundeuva Fr. All. (Aroeira-Do-Sertão), as evaluated by a Parkinson’s disease model in rats. Parkinsons Dis 2014:1–11. https://doi.org/10.1155/2014/519615

    Article  Google Scholar 

  129. Sameri MJ, Sarkaki A, Farbood Y, Mansouri SMT (2011) Motor disorders and impaired electrical power of pallidal EEG improved by gallic acid in animal model of parkinson’s disease. Pak J Biol Sci 14:1109–1116

    Article  CAS  PubMed  Google Scholar 

  130. Tan HP, Wong DZH, Ling SK, Chuah CH, Kadir HA (2012) Neuroprotective activity of galloylated cyanogenic glucosides and hydrolysable Tannins isolated from leaves of Phyllagathis rotundifolia. Fitoterapia 83:223–229. https://doi.org/10.1016/j.fitote.2011.10.019

    Article  CAS  PubMed  Google Scholar 

  131. Tapias V, Cannon JR, Greenamyre JT (2014) Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson’s disease. Neurobiol Aging 35:1162–1176. https://doi.org/10.1016/j.neurobiolaging.2013.10.077

    Article  PubMed  Google Scholar 

  132. Salman M, Tabassum H, Parvez S (2020) Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway. Mol Neurobiol 57:2870–2885. https://doi.org/10.1007/s12035-020-01924-3

    Article  CAS  PubMed  Google Scholar 

  133. Jang H, Srichayet P, Park WJ, Heo HJ, Kim DO, Tongchitpakdee S, Kim TJ, Jung SH, Lee CY (2017) Phyllanthus emblica L. (Indian gooseberry) extracts protect against retinal degeneration in a mouse model of amyloid beta-induced Alzheimer’s disease. J Funct Foods 37:330–338. https://doi.org/10.1016/j.jff.2017.07.056

    Article  CAS  Google Scholar 

  134. Custódio L, Patarra J, Alberício F, Neng NR, Nogueira JMF, Romano A (2015) Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind Crop Prod 64:45–51. https://doi.org/10.1016/j.indcrop.2014.11.001

    Article  CAS  Google Scholar 

  135. Azib L, Debbache-Benaida N, Da Costa G et al (2020) Neuroprotective effects of Fraxinus angustifolia Vahl. bark extract against Alzheimer’s disease. J Chem Neuroanat 109:101848. https://doi.org/10.1016/j.jchemneu.2020.101848

    Article  CAS  PubMed  Google Scholar 

  136. Yuan T, Ma H, Liu W, Niesen DB, Shah N, Crews R, Rose KN, Vattem DA, Seeram NP (2016) Pomegranate’s Neuroprotective Effects against Alzheimer’s Disease Are Mediated by Urolithins, Its Ellagitannin-Gut Microbial Derived Metabolites. ACS Chem Neurosci 7:26–33. https://doi.org/10.1021/acschemneuro.5b00260

    Article  CAS  PubMed  Google Scholar 

  137. Husain I, Akhtar M, Madaan T, Vohora D, Abdin MZ, Islamuddin M, Najmi AK (2018) Tannins enriched fraction of emblica officinalis fruits alleviates high-salt and cholesterol diet-induced cognitive impairment in rats via Nrf2-ARE pathway. Front Pharmacol 9:1–15. https://doi.org/10.3389/fphar.2018.00023

    Article  CAS  Google Scholar 

  138. Justin Thenmozhi A, Dhivyabharathi M, William Raja TR, Manivasagam T, Essa MM (2016) Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 19:269–278. https://doi.org/10.1179/1476830515Y.0000000016

    Article  CAS  PubMed  Google Scholar 

  139. Sekowski S, Buczkowski A, Palecz B, Abdulladjanova N (2020) Inhibitory effect of Euphorbia Tannins on α-synuclein aggregation in aqueous solutions. J Mol Liq 299:112112. https://doi.org/10.1016/j.molliq.2019.112112

    Article  CAS  Google Scholar 

  140. Sekowski S, Ionov M, Abdulladjanova N, Makhmudov R, Mavlyanov S, Milowska K, Bryszewska M, Zamaraeva M (2017) Interaction of α-synuclein with Rhus typhina tannin – Implication for Parkinson’s disease. Colloids Surf B: Biointerfaces 155:159–165. https://doi.org/10.1016/j.colsurfb.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  141. Dolatshahi M, Farbood Y, Sarkaki A et al (2015) Ellagic acid improves hyperalgesia and cognitive deficiency in 6-hydroxidopamine induced rat model of Parkinson’s disease. Iran J Basic Med Sci 18:38–46. https://doi.org/10.22038/ijbms.2015.3886

    Article  PubMed  PubMed Central  Google Scholar 

  142. Farbood Y, Sarkaki A, Dolatshahi M et al (2015) Ellagic acid protects the brain against 6-hydroxydopamine induced neuroinflammation in a rat model of parkinson’s disease. Basic Clin Neurosci 6:15–22

    Google Scholar 

  143. Ansari JM, Eftekhar-Vaghefi SH, Shahrokhi N, Basiri M, Pour F, Asadi-Shekaari M (2016) Pre-treatment effects of walnut kernel (juglans regia) on brain edema, neuronal death and neurological scores in male rat after traumatic brain injury. J Appl Pharm Sci 6:102–106. https://doi.org/10.7324/JAPS.2016.601014

    Article  Google Scholar 

  144. Zhao N, Yang X, Calvelli HR, Cao Y, Francis NL, Chmielowski RA, Joseph LB, Pang ZP, Uhrich KE, Baum J, Moghe PV (2020) Antioxidant Nanoparticles for Concerted Inhibition of α-Synuclein Fibrillization, and Attenuation of Microglial Intracellular Aggregation and Activation. Front Bioeng Biotechnol 8:1–13. https://doi.org/10.3389/fbioe.2020.00112

    Article  Google Scholar 

  145. Yeo J, Lee J, Yoon S, Kim WJ (2020) Tannic acid-based nanogel as an efficient anti-inflammatory agent. Biomater Sci 8:1148–1159. https://doi.org/10.1039/c9bm01384a

    Article  CAS  PubMed  Google Scholar 

  146. Faria A, Pestana D, Teixeira D, Couraud PO, Romero I, Weksler B, de Freitas V, Mateus N, Calhau C (2011) Insights into the putative catechin and epicatechin transport across blood-brain barrier. Food Funct 2:39–44. https://doi.org/10.1039/c0fo00100g

    Article  CAS  PubMed  Google Scholar 

  147. Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY, Sun AY (2002) Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 958:439–447. https://doi.org/10.1016/S0006-8993(02)03543-6

    Article  CAS  PubMed  Google Scholar 

  148. Juan ME, Maijó M, Planas JM (2010) Quantification of trans-Resveratrol and its metabolites in rat plasma and tissues by HPLC. J Pharm Biomed Anal 51:391–398. https://doi.org/10.1016/j.jpba.2009.03.026

    Article  CAS  PubMed  Google Scholar 

  149. Guo J, Suma T, Richardson JJ, Ejima H (2019) Modular Assembly of Biomaterials Using Polyphenols as Building Blocks. 5:5578–5596. https://doi.org/10.1021/acsbiomaterials.8b01507

Download references

Funding

Ministry of Human Resources and Development (MHRD), India, funds the first author for her graduate thesis research during the period in which this review article is written. DST-Inspire (DST/INSPIRE/04/2015/000377) and IITH interdisciplinary grant helped the authors with monetary support needed for the purchase of lab equipment like workstations.

Author information

Authors and Affiliations

Authors

Contributions

The first author (Ms.Neeraja Revi) conceptualized the article, interpreted relevant literature, and drafted the manuscript. The corresponding author (Dr. Aravind Kumar Rengan) revised the article for its rational content and mentored the first author in drafting the manuscript.

Corresponding author

Correspondence to Aravind Kumar Rengan.

Ethics declarations

Ethics approval

Figures in this manuscript are included after obtaining permission from respective source contents. The funding received by both the authors during the preparation of this manuscript is duly acknowledged. No human participants or animals were experimented for preparing this review article

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Ethical approval and Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revi, N., Rengan, A.K. Impact of dietary polyphenols on neuroinflammation-associated disorders. Neurol Sci 42, 3101–3119 (2021). https://doi.org/10.1007/s10072-021-05303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05303-1

Keywords

Navigation