Skip to main content

Advertisement

Log in

Retinal nerve fiber layer changes in migraine: a systematic review and meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Migraine is one of the most common disabling diseases in the world. Its recurrent attacks may lead to abnormalities in the structure of the brain and retina. An increasing number of studies have investigated retinal nerve fiber layer (RNFL) thickness alterations in migraine by the optical coherence tomography (OCT); however, no consensus has yet reached.

Method

We searched Pubmed, Embase, and Web of Science databases to identify studies that investigated RNFL thickness in migraine by OCT measurement and performed a meta-analysis of eligible studies.

Results

Twenty-six studies were included in the meta-analysis, comprising 1530 migraine patients and 1105 healthy controls. The mean RNFL thickness was thinner in the migraine group compared to the control group (SMD =− 0.53). In the subgroup analyses, RNFL thickness were decreased most significantly in the superior (SMD = − 0.71) and inferior (SMD = − 0.63) quadrants among all quadrants. Migraine with aura (SMD = − 0.91) showed a greater effect size of RNFL thickness reduction than migraine without aura (SMD =− 0.47). Spectral-domain OCT (SMD = − 0.55) seems more sensitive to detect RNFL thickness reduction than time-domain OCT (SMD = − 0.44). In addition, age, sex, disease duration, attack frequency, and intraocular pressure were not significantly associated with RNFL thickness.

Conclusions

The findings from our comprehensive meta-analysis with large datasets strengthen the clinical evidence of the RNFL thickness reduction in migraine. RNFL thickness via spectral-domain OCT measurement demonstrates the potential role in differentiating patients with migraine, especially migraine with aura, from healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lipton RB, Bigal ME, Steiner TJ, Silberstein SD, Olesen J (2004) Classification of primary headaches. Neurology 63(3):427–435

    Article  CAS  PubMed  Google Scholar 

  2. Stovner LJ, Nichols E, Steiner TJ, Abd-Allah F, Abdelalim A, Al-Raddadi RM, Ansha MG, Barac A, Bensenor IM, Doan LP, Edessa D, Endres M, Foreman KJ, Gankpe FG, Gopalkrishna G, Goulart AC, Gupta R, Hankey GJ, Hay SI, Hegazy MI, Hilawe EH, Kasaeian A, Kassa DH, Khalil I, Khang YH, Khubchandani J, Kim YJ, Kokubo Y, Mohammed MA, Moradi-Lakeh M, Nguyen HLT, Nirayo YL, Qorbani M, Ranta A, Roba KT, Safiri S, Santos IS, Satpathy M, Sawhney M, Shiferaw MS, Shiue I, Smith M, Szoeke CEI, Truong NT, Venketasubramanian N, Weldegwergs KG, Westerman R, Wijeratne T, Tran BX, Yonemoto N, Feigin VL, Vos T, Murray CJL, Collaborators GBDH (2018) Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(11):954–976. https://doi.org/10.1016/s1474-4422(18)30322-3

    Article  Google Scholar 

  3. Russo A, Tessitore A, Tedeschi G (2013) Migraine and trigeminal system-I can feel it coming. Curr Pain Headache Rep 17(10):367. https://doi.org/10.1007/s11916-013-0367-2

    Article  PubMed  Google Scholar 

  4. Riesco N, Cernuda-Morollón E, Pascual J (2017) Neuropeptides as a Marker for Chronic Headache. Curr Pain Headache Rep 21(4):18. https://doi.org/10.1007/s11916-017-0618-8

    Article  PubMed  Google Scholar 

  5. Flammer J, Pache M, Resink T (2001) Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 20(3):319–349

    Article  CAS  PubMed  Google Scholar 

  6. Martinez A, Proupim N, Sanchez M (2008) Retinal nerve fibre layer thickness measurements using optical coherence tomography in migraine patients. Br J Ophthalmol 92(8):1069–1075. https://doi.org/10.1136/bjo.2008.137471

    Article  CAS  PubMed  Google Scholar 

  7. Galetta KM, Calabresi PA, Frohman EM, Balcer LJ (2011) Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics 8(1):117–132. https://doi.org/10.1007/s13311-010-0005-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mwanza J-C, Oakley JD, Budenz DL, Chang RT, Knight ORJ, Feuer WJ (2011) Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52(11):8323–8329. https://doi.org/10.1167/iovs.11-7962

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim KE, Yoo BW, Jeoung JW, Park KH (2015) Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Invest Ophthalmol Vis Sci 56(8):4857–4864. https://doi.org/10.1167/iovs.14-16350

    Article  PubMed  Google Scholar 

  10. Marziani E, Ramolfo P, Mariani C, Pomati S, Giani A, Cigada M, Staurenghi GJIO, Science V (2009) Evaluation of retinal nerve fibre layer and ganglion layer cells thickness as biologic marker of. Alzheimer’s disease. 50(13):1096–1096

    Google Scholar 

  11. Ao R, Wang R, Yang M, Wei S, Shi X, Yu S (2018) Altered retinal nerve fiber layer thickness and choroid thickness in patients with migraine. Eur Neurol 80(3-4):130–137. https://doi.org/10.1159/000494671

    Article  PubMed  Google Scholar 

  12. Abdellatif MK, Fouad MM (2018) Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness. Eur J Ophthalmol 28(6):714–721. https://doi.org/10.1177/1120672117750054

    Article  PubMed  Google Scholar 

  13. Demirci S, Gunes A, Demirci S, Kutluhan S, Tok L, Tok O (2016) The effect of cigarette smoking on retinal nerve fiber layer thickness in patients with migraine. Cutan Ocul Toxicol 35(1):21–25. https://doi.org/10.3109/15569527.2014.1003935

    Article  CAS  PubMed  Google Scholar 

  14. Yener AU, Korucu O (2019) Quantitative analysis of the retinal nerve fiber layer, ganglion cell layer and optic disc parameters by the swept source optical coherence tomography in patients with migraine and patients with tension-type headache. Acta Neurol Belg 119(4):541–548. https://doi.org/10.1007/s13760-018-1041-6

    Article  PubMed  Google Scholar 

  15. Simsek IB, Aygun D, Yildiz S (2015) Retinal Nerve Fibre Layer Thickness in Migraine Patients with or without Aura. Neuroophthalmology 39(1):17–21. https://doi.org/10.3109/01658107.2014.968740

    Article  PubMed  Google Scholar 

  16. Feng Y-F, Guo H, Huang J-H, Yu J-G, Yuan F (2016) Retinal Nerve Fiber Layer Thickness Changes in Migraine: A Meta-Analysis of Case-Control Studies. Curr Eye Res 41(6):814–822. https://doi.org/10.3109/02713683.2015.1056373

    Article  CAS  PubMed  Google Scholar 

  17. Yu JG, Feng YF, Xiang Y, Huang JH, Savini G, Parisi V, Yang WJ, Fu XA (2014) Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PloS one 9(1):e85718. https://doi.org/10.1371/journal.pone.0085718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iyigundogdu I, Derle E, Asena L, Kural F, Kibaroglu S, Ocal R, Akkoyun I, Can U (2018) Relationship between white matter hyperintensities and retinal nerve fiber layer, choroid, and ganglion cell layer thickness in migraine patients. Cephalalgia 38(2):332–339. https://doi.org/10.1177/0333102417694882

    Article  PubMed  Google Scholar 

  19. Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, Fraga-Pumar E, Llufriu S, Ortiz S, Bullich S, Sepulveda M, Falcon C, Berenguer J, Saiz A, Sanchez-Dalmau B, Villoslada P (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75(1):98–107. https://doi.org/10.1002/ana.24030

    Article  CAS  PubMed  Google Scholar 

  20. Mwanza J-C, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, Feuer WJ (2010) Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci 51(11):5724–5730. https://doi.org/10.1167/iovs.10-5222

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cruz-Herranz A, Balk LJ, Oberwahrenbrock T, Saidha S, Martinez-Lapiscina EH, Lagreze WA, Schuman JS, Villoslada P, Calabresi P, Balcer L, Petzold A, Green AJ, Paul F, Brandt AU, Albrecht P (2016) The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 86(24):2303–2309. https://doi.org/10.1212/wnl.0000000000002774

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ekinci M, Ceylan E, Cagatay HH, Keles S, Huseyinoglu N, Tanyildiz B, Cakici O, Kartal B (2014) Retinal nerve fibre layer, ganglion cell layer and choroid thinning in migraine with aura. BMC Ophthalmol 14:75. https://doi.org/10.1186/1471-2415-14-75

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gunes A, Karadag AS, Yazgan S, Celik HU, Simsek A (2018) Evaluation of retinal nerve fibre layer, ganglion cell layer and choroidal thickness with optical coherence tomography in migraine patients: a case-control study. Clin Exp Optom 101(1):109–115. https://doi.org/10.1111/cxo.12585

    Article  PubMed  Google Scholar 

  25. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  27. Cohen J (1992) A power primer. Psychol Bull 112(1):155–159

    Article  CAS  PubMed  Google Scholar 

  28. Acer S, Oguzhanoglu A, Cetin EN, Ongun N, Pekel G, Kasikci A, Yagci R (2016) Ocular pulse amplitude and retina nerve fiber layer thickness in migraine patients without aura. BMC Ophthalmol 16:1. https://doi.org/10.1186/s12886-015-0180-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chang MY, Phasukkijwatana N, Garrity S, Pineles SL, Rahimi M, Sarraf D, Johnston M, Charles A, Arnold AC (2017) Foveal and peripapillary vascular decrement in migraine with aura demonstrated by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(12):5477–5484. https://doi.org/10.1167/iovs.17-22477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Colak HN, Kantarci FA, Tatar MG, Eryilmaz M, Uslu H, Goker H, Yildirim A, Gurler B (2016) Retinal nerve fiber layer, ganglion cell complex, and choroidal thicknesses in migraine. Arq Bras Oftalmol 79(2):78–81. https://doi.org/10.5935/0004-2749.20160024

    Article  PubMed  Google Scholar 

  31. Demircan S, Atas M, Arik Yuksel S, Ulusoy MD, Yuvaci I, Arifoglu HB, Baskan B, Zararsiz G (2015) The impact of migraine on posterior ocular structures. J Ophthalmol 2015:868967–868968. https://doi.org/10.1155/2015/868967

    Article  PubMed  PubMed Central  Google Scholar 

  32. El-Shazly AAE, Farweez YA, Hamdi MM, El-Sherbiny NE (2017) Pattern visual evoked potential, pattern electroretinogram, and retinal nerve fiber layer thickness in patients with migraine during and after aura. Curr Eye Res 42(9):1327–1332. https://doi.org/10.1080/02713683.2017.1319490

    Article  PubMed  Google Scholar 

  33. Gipponi S, Scaroni N, Venturelli E, Forbice E, Rao R, Liberini P, Padovani A, Semeraro F (2013) Reduction in retinal nerve fiber layer thickness in migraine patients. Neurol Sci 34(6):841–845. https://doi.org/10.1007/s10072-012-1103-0

    Article  PubMed  Google Scholar 

  34. Gunes A, Demirci S, Tok L, Tok O, Demirci S, Kutluhan S (2016) Is retinal nerve fiber layer thickness change related to headache lateralization in migraine. Korean J Ophthalmol 30(2):134–139. https://doi.org/10.3341/kjo.2016.30.2.134

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kirbas S, Tufekci A, Turkyilmaz K, Kirbas A, Oner V, Durmus M (2013) Evaluation of the retinal changes in patients with chronic migraine. Acta Neurol Belg 113(2):167–172. https://doi.org/10.1007/s13760-012-0150-x

    Article  PubMed  Google Scholar 

  36. Michael NDB, Hussein A, Abd Halim S, Ab Hamid SA (2019) Evaluation of optic nerve head parameters, retinal nerve fiber layer thickness, and ocular perfusion pressure in migraine patients. Cureus 11(5):e4599. https://doi.org/10.7759/cureus.4599

    Article  PubMed  PubMed Central  Google Scholar 

  37. Reggio E, Chisari CG, Ferrigno G, Patti F, Donzuso G, Sciacca G, Avitabile T, Faro S, Zappia M (2017) Migraine causes retinal and choroidal structural changes: evaluation with ocular coherence tomography. J Neurol 264(3):494–502. https://doi.org/10.1007/s00415-016-8364-0

    Article  PubMed  Google Scholar 

  38. Salman AG, Hamid MA, Mansour DE (2015) Correlation of visual field defects and optical coherence tomography finding in migraine patients. Saudi J Ophthalmol 29(1):76–80. https://doi.org/10.1016/j.sjopt.2014.06.008

    Article  PubMed  Google Scholar 

  39. Sirakaya E, Kucuk B, Agadayi A, Yilmaz N (2020) Evaluation of the lamina cribrosa thickness and depth in patients with migraine. Int Ophthalmol 40(1):89–98. https://doi.org/10.1007/s10792-019-01160-2

    Article  PubMed  Google Scholar 

  40. Sorkhabi R, Mostafaei S, Ahoor M, Talebi M (2013) Evaluation of retinal nerve fiber layer thickness in migraine. Iran J Neurol 12(2):51–55

    PubMed  PubMed Central  Google Scholar 

  41. Tak AZA, Sengul Y, Bilak S (2018) Evaluation of white matter hyperintensities and retinal fiber layer, ganglion cell layer, inner-plexiform layer, and choroidal layer in migraine patients. Neurol Sci 39(3):489–496. https://doi.org/10.1007/s10072-017-3234-9

    Article  PubMed  Google Scholar 

  42. Tunc A, Gungen BD, Evliyaoglu F, Aras YG, Tekesin AK (2017) Evaluation of retinal nerve fiber layer, ganglion cell layer and macular changes in patients with migraine. Acta Neurol Belg 117(1):121–129. https://doi.org/10.1007/s13760-016-0715-1

    Article  PubMed  Google Scholar 

  43. Ulusoy MO, Horasanli B, Kal A (2019) Retinal vascular density evaluation of migraine patients with and without aura and association with white matter hyperintensities. Acta Neurol Belg 119(3):411–417. https://doi.org/10.1007/s13760-019-01094-7

    Article  PubMed  Google Scholar 

  44. Verroiopoulos GV, Nitoda E, Ladas ID, Brouzas D, Antonakaki D, Moschos MM (2016) Ophthalmological assessment of OCT and electrophysiological changes in migraine patients. J Clin Neurophysiol 33(5):431–442. https://doi.org/10.1097/wnp.0000000000000256

    Article  PubMed  Google Scholar 

  45. Yulek F, Dirik EB, Eren Y, Simavli H, Ugurlu N, Cagil N, Simsek S (2015) Macula and retinal nerve fiber layer in migraine patients: analysis by spectral domain optic coherence tomography. Semin Ophthalmol 30(2):124–128. https://doi.org/10.3109/08820538.2013.833270

    Article  PubMed  Google Scholar 

  46. Wang JJ, Mitchell P, Smith W (1997) Is there an association between migraine headache and open-angle glaucoma? Findings from the Blue Mountains Eye Study. Ophthalmology 104(10):1714–1719. https://doi.org/10.1016/s0161-6420(97)30075-x

    Article  CAS  PubMed  Google Scholar 

  47. Kara SA, Erdemoğlu AK, Karadeniz MY, Altinok D (2003) Color Doppler sonography of orbital and vertebral arteries in migraineurs without aura. J Clin Ultrasound 31(6):308–314

    Article  PubMed  Google Scholar 

  48. Martinez A, Proupim N, Sanchez M (2009) Scanning laser polarimetry with variable corneal compensation in migraine patients. Acta Ophthalmol 87(7):746–753. https://doi.org/10.1111/j.1755-3768.2008.01356.x

    Article  PubMed  Google Scholar 

  49. Osborne NN, Melena J, Chidlow G, Wood JP (2001) A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma. Br J Ophthalmol 85(10):1252–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McKendrick AM, Vingrys AJ, Badcock DR, Heywood JT (2000) Visual field losses in subjects with migraine headaches. Invest Ophthalmol Vis Sci 41(5):1239–1247

    CAS  PubMed  Google Scholar 

  51. Drance S, Anderson DR, Schulzer M (2001) Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131(6):699–708. https://doi.org/10.1016/s0002-9394(01)00964-3

    Article  CAS  PubMed  Google Scholar 

  52. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, Kim YJ, Park SB, Hong HE, Kook MS (2010) Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51(3):1446–1452. https://doi.org/10.1167/iovs.09-4258

    Article  PubMed  Google Scholar 

  53. Bes A, Kunkel R, Lance JW, Nappi G, Pfaffenrath V, Rose FC, Schoenberg BS, Soyka D, Tfelt-Hansen P, Welch KMA, Wilkinson M, Olesen J, Bousser MG, Diener HC, Dodick D, First M, Goadsby PJ, Gobel H, Lainez MJA, Lance JW, Lipton RB, Nappi G, Sakai F, Schoenen J, Silberstein SD, Steiner TJ, Olesen J, Bendtsen L, Dodick D, Ducros A, Evers S, First M, Goadsby PJ, Hershey A, Katsarava Z, Levin M, Pascual J, Russell MB, Schwedt T, Steiner TJ, Tassorelli C, Terwindt GM, Vincent M, Wang SJ, Olesen J, Evers S, Charles A, Hershey A, Lipton R, First M, Bolay H, Lanteri-Minet M, MacGregor EA, Takeshima T, Schytz HW, Ashina S, Goicochea MT, Hirata K, Holroyd K, Lampl C, Lipton RB, Mitsikostas DD, Schoenen J, Goadsby P, Boes C, Bordini C, Cittadini E, Cohen A, Leone M, May A, Newman L, Pareja J, Park JW, Rozen T, Waldenlind E, Wang SJ, Ducros A, Evers S, Fuh JL, Ozge A, Pareja JA, Pascual J, Peres M, Young W, Yu SY, Schwedt T, Abu-Arafeh I, Gladstone J, Huang SJ, Jensen R, Lainez JMA, Obelieniene D, Sandor P, Scher AI, Ducros A, Ihs (2013) The international classification of headache disorders, 3rd edition (beta version). Cephalalgia 33(9):629–808. https://doi.org/10.1177/0333102413485658

    Article  Google Scholar 

  54. Rasmussen BK, Olesen J (1992) Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia 12(4):221–228; discussion 186. https://doi.org/10.1046/j.1468-2982.1992.1204221.x

    Article  CAS  PubMed  Google Scholar 

  55. Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P (2013) Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 14(1):62. https://doi.org/10.1186/1129-2377-14-62

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aizenman CD, Kirkwood A, Bear MF (1996) A current source density analysis of evoked responses in slices of adult rat visual cortex: implications for the regulation of long-term potentiation. Cereb Cortex 6(6):751–758. https://doi.org/10.1093/cercor/6.6.751

    Article  CAS  PubMed  Google Scholar 

  57. Nassif N, Cense B, Park B, Pierce M, Yun S, Bouma B, Tearney G, Chen T, de Boer J (2004) In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express 12(3):367–376. https://doi.org/10.1364/opex.12.000367

    Article  CAS  PubMed  Google Scholar 

  58. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28(21):2067–2069. https://doi.org/10.1364/ol.28.002067

    Article  PubMed  Google Scholar 

  59. Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11(8):889–894. https://doi.org/10.1364/oe.11.000889

    Article  CAS  PubMed  Google Scholar 

  60. Chen TC, Cense B, Pierce MC, Nassif N, Park BH, Yun SH, White BR, Bouma BE, Tearney GJ, de Boer JF (2005) Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Arch Ophthalmol 123(12):1715–1720. https://doi.org/10.1001/archopht.123.12.1715

    Article  PubMed  Google Scholar 

  61. van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD (2007) Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 26(1):57–77. https://doi.org/10.1016/j.preteyeres.2006.10.002

    Article  PubMed  Google Scholar 

  62. Ferrari L, Huang SC, Magnani G, Ambrosi A, Comi G, Leocani L (2017) Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer’s disease. J Alzheimers Dis 56(3):1101–1107. https://doi.org/10.3233/jad-160886

    Article  CAS  PubMed  Google Scholar 

  63. Kiernan DF, Hariprasad SM, Chin EK, Kiernan CL, Rago J, Mieler WF (2009) Prospective comparison of cirrus and stratus optical coherence tomography for quantifying retinal thickness. Am J Ophthalmol 147(2):267–275.e262. https://doi.org/10.1016/j.ajo.2008.08.018

    Article  PubMed  Google Scholar 

  64. Schmetterer L, Wolzt M, Krejcy K, Graselli U, Findl O, Eichler HG, Singer EA (1996) Cerebral and ocular hemodynamic effects of sumatriptan in the nitroglycerin headache model. Clin Pharmacol Ther 60(2):199–205. https://doi.org/10.1016/s0009-9236(96)90136-8

    Article  CAS  PubMed  Google Scholar 

  65. Tokuoka K, Takayanagi R, Toyabe M, Watanabe M, Kitagawa Y, Yamada Y (2015) Theoretical analysis of headache recurrence in patients administered triptans for migraine based on receptor occupancy. J Headache Pain 16:71. https://doi.org/10.1186/s10194-015-0558-9

    Article  PubMed  PubMed Central  Google Scholar 

  66. Forte R, Cennamo GL, Finelli ML, de Crecchio G (2009) Comparison of time domain Stratus OCT and spectral domain SLO/OCT for assessment of macular thickness and volume. Eye (Lond) 23(11):2071–2078. https://doi.org/10.1038/eye.2008.363

    Article  CAS  Google Scholar 

  67. Britze J, Pihl-Jensen G, Frederiksen JL (2017) Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol 264(9):1837–1853. https://doi.org/10.1007/s00415-017-8531-y

    Article  PubMed  Google Scholar 

  68. Peng A, Qiu X, Zhang L, Zhu X, He S, Lai W, Chen L (2017) Evaluation of the retinal nerve fiber layer in neuromyelitis optica spectrum disorders: A systematic review and meta-analysis. J Neurol Sci 383:108–113. https://doi.org/10.1016/j.jns.2017.10.028

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81601161).

Author information

Authors and Affiliations

Authors

Contributions

HJZ, PWZ, and PLP conceived ideas and designed research, QQL, XGL, ZQY, and HZ contributed to search databases, screen literature, extract data and perform statistical analysis. ZQY, HJZ, CCC, and RYC provided guidance on the software. XGL and ZQY drafted the manuscript. PWZ, HJZ, and PLP participated in the editing and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to PanWen Zhao or PingLei Pan.

Ethics declarations

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Figure 1

Sensitivity analysis of studies meeting the eligibility criteria CI, confidence intervals (PNG 2211 kb)

High Resolution Image (TIF 1434 kb)

Supplementary Figure 2

Meta-analysis of the mean RNFL thickness of migraine patients and healthy controls measured in both eyes RNFL, retinal never fiber layer; SMD, standard mean difference; CI, confidence intervals (PNG 2392 kb)

High Resolution Image (TIF 1436 kb)

Supplementary Figure 3

Meta-analysis of the mean RNFL thickness of migraine patients and healthy controls measured in random single eye RNFL, retinal never fiber layer; SMD, standard mean difference; CI, confidence intervals (PNG 2258 kb)

High Resolution Image (TIF 1058 kb)

Supplementary Figure 4.

Meta-analysis of the mean RNFL thickness of migraine patients and healthy controls measured in the right eye RNFL, retinal never fiber layer; SMD, standard mean difference; CI, confidence intervals (PNG 2305 kb)

High Resolution Image (TIF 1251 kb)

Supplementary Figure 5.

Meta-analysis of the mean RNFL thickness of migraine patients and healthy controls measured in the left eye RNFL, retinal never fiber layer; SMD, standard mean difference; CI, confidence intervals (PNG 2414 kb)

High Resolution Image (TIF 1673 kb)

Supplementary Table 1

(DOCX 19 kb)

Supplementary Table 2

(DOCX 19 kb)

Supplementary Table 3

(DOCX 18 kb)

Supplementary Table 4

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Yi, Z., Zhang, X. et al. Retinal nerve fiber layer changes in migraine: a systematic review and meta-analysis. Neurol Sci 42, 871–881 (2021). https://doi.org/10.1007/s10072-020-04992-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04992-4

Keywords

Navigation