Skip to main content

Advertisement

Log in

Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disorder and the most common type of dementia in the elderly. Although its cause is not completely known, several studies suggest that oxidative stress plays an important role in the etiology of this disease. The SIRT1 and SOD2 proteins are linked to pathways that may impair oxidative stress. In this study, we analyzed the association between polymorphisms in these genes and in the APOE gene, through RT-PCR, as well as between environmental factors and the risk of AD. Additionally, the thiobarbituric acid reactive substance assay was performed to estimate the plasma level of malondialdehyde (MDA), a biomarker of lipid peroxidation. Furthermore, some cytogenetic studies indicate that cells of AD patients show increased chromosomal damage; thus, we performed the micronucleus cytome assay to assess cytogenetic damage in AD patients. As expected, the APOE polymorphisms were found to be highly associated with AD. Additionally, the CT genotype of the SIRT1 gene showed a positive association with the disease. The frequencies of genomic damage (micronucleus, buds, nucleoplasmic bridges and binucleated cells), the presence of cell death biomarkers (condensed chromatin, karyorrhexis and pyknosis), and the plasma level of MDA were significantly greater in AD patients than in controls. Our results support the hypothesis that AD is a condition with increased oxidative stress and genomic instability, which may contribute to the neurodegeneration in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Prince M, Comas-Herrera A, Knapp M et al (2016) World Alzheimer Report 2016 Improving healthcare for people living with dementia. Coverage, Quality and costs now and in the future. In: Alzheimer’s Disease International (ADI). Alzheimer’s Disease International (ADI), London, pp 1–140

    Google Scholar 

  2. Pimplikar SW, Nixon RA, Robakis NK et al (2010) Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 30:14946–14954. https://doi.org/10.1523/JNEUROSCI.4305-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karch CM, Goate AM (2014) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 1–9. https://doi.org/10.1016/j.biopsych.2014.05.006

  4. Hardas SS, Sultana R, Clark AM et al (2013) Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol 1:80–85

    Article  CAS  Google Scholar 

  5. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  CAS  Google Scholar 

  6. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45:1594–1601

    Article  CAS  Google Scholar 

  7. Lovell MA, Markesbery WR (2007) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85:3036–3040

    Article  CAS  Google Scholar 

  8. Benedetti D, Nunes E, Sarmento M et al (2013) Genetic damage in soybean workers exposed to pesticides: evaluation with the comet and buccal micronucleus cytome assays. Mutat Res Genet Toxicol Environ Mutagen 752:28–33

    Article  CAS  Google Scholar 

  9. Celik A, Diler SB, Eke D (2010) Assessment of genetic damage in buccal epithelium cells of painters: micronucleus, nuclear changes, and repair index. DNA Cell Biol 29:277–284

    Article  CAS  Google Scholar 

  10. Holland N, Bolognesi C, Kirsch-Volders M et al (2008) The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res Rev Mutat Res 659:93–108

    Article  CAS  Google Scholar 

  11. Migliore L, Coppedè F, Fenech M, Thomas P (2011) Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis 26:85–92

    Article  CAS  Google Scholar 

  12. Ortiz GG, Moisés FPP, Mireles-Ramírez M et al (2017) Chapter One-Oxidative stress: love and hate history in central nervous system. Adv Protein Chem Struct Biol 108:1–31

    Article  CAS  Google Scholar 

  13. Rizzi L, Roriz-Cruz M (2018) Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropeptides 71:54–60. https://doi.org/10.1016/j.npep.2018.07.001

    Article  CAS  Google Scholar 

  14. Lee HJ, Yang SJ (2017) Aging-related correlation between serum sirtuin 1 activities and basal metabolic rate in women, but not in men. Clin Nutr Res 6:18–26

    Article  Google Scholar 

  15. Wiener HW, Perry RT, Chen Z et al (2007) A polymorphism in SOD2 is associated with development of Alzheimer’s disease. Genes Brain Behav 6:770–776. https://doi.org/10.1111/j.1601-183X.2007.00308.x

    Article  CAS  PubMed  Google Scholar 

  16. Zhao N, Liu C-C, Qiao W, Bu G (2018) Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry 83:347–357. https://doi.org/10.1016/j.biopsych.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82. https://doi.org/10.1080/01616412.2016.1251711

    Article  CAS  PubMed  Google Scholar 

  18. Marnett LJ (1999) Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res Fundam Mol Mech Mutagen 424:83–95

    Article  CAS  Google Scholar 

  19. Pizzimenti S, Ciamporcero ES, Daga M et al (2013) Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol 4:242

    Article  Google Scholar 

  20. Uchida K (2013) Redox-derived damage-associated molecular patterns: ligand function of lipid peroxidation adducts. Redox Biol 1:94–96

    Article  CAS  Google Scholar 

  21. Morris JC (1993) The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 43:2412–2412. https://doi.org/10.1212/WNL.43.11.2412-a

    Article  CAS  PubMed  Google Scholar 

  22. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  Google Scholar 

  23. McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–939. https://doi.org/10.1212/WNL.34.7.939

    Article  CAS  PubMed  Google Scholar 

  24. Fagundes Chaves ML, Camozzato AL, Godinho C et al (2007) Validity of the clinical dementia rating scale for the detection and staging of dementia in Brazilian patients. Alzheimer Dis Assoc Disord 21:210–217. https://doi.org/10.1097/WAD.0b013e31811ff2b4

    Article  Google Scholar 

  25. Macedo Montaño MBM, Ramos LR (2005) Validade da versão em português da Clinical Dementia Rating. Rev Saude Publica 39:912–917. https://doi.org/10.1590/S0034-89102005000600007

    Article  Google Scholar 

  26. Arevalo-Rodriguez I, Smailagic N, Roquéi Figuls M et al (2015) Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev

  27. Menegardo CS, Friggi FA, Scardini JB et al (2019) Sundown syndrome in patients with Alzheimer’s disease dementia. Dement Neuropsychol 13:469–474. https://doi.org/10.1590/1980-57642018dn13-040015

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carrano AV, Natarajan AT (1988) Considerations for population monitoring using cytogenetic techniques. Mutat Res Genet Toxicol 204:379–406

    Article  CAS  Google Scholar 

  29. Fenech M, Morley A (1985) Solutions to the kinetic problem in the micronucleus assay. Cytobios 43:233–246

    CAS  PubMed  Google Scholar 

  30. Bolognesi C, Fenech M (2013) Micronucleus assay in human cells: lymphocytes and buccal cells. In: Genotoxicity Assessment. Springer, pp 191–207

  31. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. https://doi.org/10.1016/S0076-6879(78)52032-6

    Article  CAS  PubMed  Google Scholar 

  32. Valenzuela A (1991) The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress. Life Sci 48:301–309

    Article  CAS  Google Scholar 

  33. Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621 s–629 s

    Article  CAS  Google Scholar 

  34. Coskun PE, Beal MF, Wallace DC (2004) Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 101:10726–10731

    Article  CAS  Google Scholar 

  35. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751

    Article  CAS  Google Scholar 

  36. Pei L, Wallace DC (2018) Mitochondrial Etiology of Neuropsychiatric Disorders. Biol Psychiatry 83:722–730

    Article  CAS  Google Scholar 

  37. Treviño-Saldaña N, García-Rivas G (2017) Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals. Oxidative Med Cell Longev 2017:1–16. https://doi.org/10.1155/2017/1750306

    Article  CAS  Google Scholar 

  38. Hadar A, Milanesi E, Walczak M et al (2018) SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Sci Rep 8:8465. https://doi.org/10.1038/s41598-018-26547-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pasinetti GM, Zhao Z, Qin W et al (2007) Caloric intake and Alzheimer’s disease. In: Mechanisms of dietary restriction in aging and disease. Karger Publishers, pp 159–175

  40. Julien C, Tremblay C, Émond V et al (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68:48–58

    Article  CAS  Google Scholar 

  41. Muñoz SS, Garner B, Ooi L (2019) Understanding the role of ApoE fragments in Alzheimer’s disease. Neurochem Res 44:1297–1305. https://doi.org/10.1007/s11064-018-2629-1

    Article  CAS  PubMed  Google Scholar 

  42. Uddin MS, Kabir MT, Al Mamun A et al (2019) APOE and Alzheimer’s disease: evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol Neurobiol 56:2450–2465. https://doi.org/10.1007/s12035-018-1237-z

    Article  CAS  PubMed  Google Scholar 

  43. Corder E, Saunders A, Strittmatter W et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923. https://doi.org/10.1126/science.8346443

    Article  CAS  PubMed  Google Scholar 

  44. Farrer LA, Cupples LA, Haines JL et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. Jama 278:1349–1356

    Article  CAS  Google Scholar 

  45. Ewbank DC (2004) The APOE gene and differences in life expectancy in Europe. J Gerontol Ser A Biol Med Sci 59:B16–B20

    Article  Google Scholar 

  46. Ji Y, Liu M, Huo YR et al (2013) Apolipoprotein Ε ε4 frequency is increased among Chinese patients with frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord 36:163–170

    Article  CAS  Google Scholar 

  47. Bosco P, Guéant-Rodríguez RM, Anello G et al (2005) Allele ε4 of APOE is a stronger predictor of Alzheimer risk in Sicily than in continental South Italy. Neurosci Lett 388:168–172. https://doi.org/10.1016/j.neulet.2005.06.056

    Article  CAS  PubMed  Google Scholar 

  48. Miyata M, Smith JD (1996) Apolipoprotein E allele–specific antioxidant activity and effects on cytotoxicity by oxidative insults and β–amyloid peptides. Nat Genet 14:55–61

    Article  CAS  Google Scholar 

  49. Rebeck GW, Kindy M, LaDu MJ (2002) Apolipoprotein E and Alzheimer’s disease: the protective effects of ApoE2 and E3. J Alzheimers Dis 4:145–154

    Article  CAS  Google Scholar 

  50. Nielsen HM, Chen K, Lee W et al (2017) Peripheral apoE isoform levels in cognitively normal APOE ε3/ε4 individuals are associated with regional gray matter volume and cerebral glucose metabolism. Alzheimers Res Ther 9:5. https://doi.org/10.1186/s13195-016-0231-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nozik-Grayck E, Suliman HB, Piantadosi CA (2005) Extracellular superoxide dismutase. Int J Biochem Cell Biol 37:2466–2471

    Article  CAS  Google Scholar 

  52. Migliore L, Testa A, Scarpato R et al (1997) Spontaneous and induced aneuploidy in peripheral blood lymphocytes of patients with Alzheimer’s disease. Hum Genet 101:299–305

    Article  CAS  Google Scholar 

  53. Petrozzi L, Lucetti C, Scarpato R et al (2002) Cytogenetic alterations in lymphocytes of Alzheimer’s disease and Parkinson’s disease patients. Neurol Sci 23:s97–s98

    Article  Google Scholar 

  54. Fenech M, Holland N, Zeiger E et al (2011) The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells—past, present and future. Mutagenesis 26:239–245

    Article  CAS  Google Scholar 

  55. Lee SL, Thomas P, Hecker J et al (2015) Chromosomal DNA damage measured using the cytokinesis-block micronucleus cytome assay is significantly associated with cognitive impairment in South Australians. Environ Mol Mutagen 56:32–40. https://doi.org/10.1002/em.21890

    Article  CAS  PubMed  Google Scholar 

  56. Sánchez-Flores M, Marcos-Pérez D, Lorenzo-López L et al (2018) Frailty syndrome and genomic instability in older adults: suitability of the cytome micronucleus assay as a diagnostic tool. J Gerontol Ser A 73:864–872. https://doi.org/10.1093/gerona/glx258

    Article  Google Scholar 

  57. Thomas P, Fenech M (2007) A review of genome mutation and Alzheimer’s disease. Mutagenesis 22:15–33. https://doi.org/10.1093/mutage/gel055

    Article  CAS  PubMed  Google Scholar 

  58. Migliore L, Fontana I, Trippi F et al (2005) Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging 26:567–573. https://doi.org/10.1016/j.neurobiolaging.2004.07.016

    Article  CAS  PubMed  Google Scholar 

  59. Nielsen F, Mikkelsen BB, Nielsen JB et al (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43:1209–1214

    Article  CAS  Google Scholar 

  60. Bourdel-Marchasson I, Delmas-Beauviex MC, Peuchant E et al (2001) Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing 30:235–241. https://doi.org/10.1093/ageing/30.3.235

    Article  CAS  PubMed  Google Scholar 

  61. Torres LL, Quaglio NB, De Souza GT et al (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. https://doi.org/10.3233/JAD-2011-110284

Download references

Funding

This study was supported by Fundo de Apoio à Ciência e Tecnologia do Município de Vitória (grant number 5928/2011), Fundação de Amparo à Pesquisa do Estado do Espírito Santo, Programa de Pesquisa para o Sistema Único de Saúde (grant number 65849124), Ministério da Ciência, Tecnologia e Inovação, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério da Educação, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant number 552672/2011–4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucimara Ferreira Figueiredo Almeida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camporez, D., Belcavello, L., Almeida, J.F.F. et al. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer’s disease. Neurol Sci 42, 1843–1851 (2021). https://doi.org/10.1007/s10072-020-04704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04704-y

Keywords

Navigation