Skip to main content
Log in

Brain activity underlying face and face pareidolia processing: an ERP study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background and purpose

Face pareidolia is described as an interpretation of any unrelated object seen for the first time as a face. It is still unclear how to face pareidolia is processed. In this study, the neural basis of face and face pareidolia processing was investigated through recording event-related potentials (ERPs).

Methods

The ERPs were recorded from 35 right-handed and healthy participants in response to faces and face pareidolia. Amplitudes and latencies of N170, vertex-positive potential (VPP), and N250 components were analyzed, and current source density (CSD) maps relevant to these components were obtained.

Results

N170 response was earlier and larger in response to faces compared to face pareidolias. VPP is also evoked earlier in response to faces as in the case of N170; however, the VPP amplitude was larger for face pareidolias than for faces. Statistical analyses did not reveal any differences between faces and face pareidolias in terms of N250 component.

Conclusion

The results indicated that faces and face pareidolias are processed in the early stages of visual perception. In addition, the N250 component does not reflect the neural processing of faces and face pareidolias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Windhager S, Slice DE, Schaefer K, Oberzaucher E, Thorstensen T, Grammer K (2008) Face to face: the perception of automotive designs. Hum Nat 19:331–346

    Article  PubMed  Google Scholar 

  2. Ichikawa H, Kanazawa S, Yamaguchi MK (2011) Finding a face in a face-like object. Perception 40:500–502

    Article  PubMed  Google Scholar 

  3. O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–1023

    Article  PubMed  Google Scholar 

  4. Liu J, Li J, Feng L, Li L, Tian J, Lee K (2014) Seeing Jesus in toast: neural and behavioral correlates of face pareidolia. Cortex 53:60–77

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hadjikhani N, Kveraga K, Naik P, Ahlfors SP (2009) Early (M170) activation of the face-specific cortex by face-like objects. Neuroreport 20:403–407

    Article  PubMed  PubMed Central  Google Scholar 

  6. Proverbio AM, Galli J (2016) Women are better at seeing faces where there are none: an ERP study of face pareidolia. Soc Cogn Affect Neurosci 11:1501–1512

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu T, Mu S, He H, Zhang L, Fan C, Ren J et al (2016) The N170 component is sensitive to face-like stimuli: a study of Chinese Peking opera makeup. Cogn Neurodyn 10:535–541

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nihei Y, Minami T, Nakauchi S (2018) Brain activity related to the judgment of face-likeness: correlation between EEG and face-like evaluation. Front Hum Neurosci 16:12–56

    Google Scholar 

  9. Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996) Electrophysiological studies of face perception in humans. J Cogn Neurosci 8:551–565

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eimer M (2000a) Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clin Neurophysiol 111:694–705

    Article  CAS  PubMed  Google Scholar 

  11. Eimer M (2000b) The face-specific N170 component reflects late stage in the structural encoding of face. NeuroReport 11:2319–2324

    Article  CAS  PubMed  Google Scholar 

  12. Halgren E, Raij T, Marinkovic K, Jousmäki V, Hari R (2000) Cognitive response profile of the human fusiform face area as determined by MEG. Cereb Cortex 10:69–81

    Article  CAS  PubMed  Google Scholar 

  13. Rossion B, Gauthier I, Tarr MJ, Despland P, Bruyer R, Linotte S, Crommelinck M (2000) The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face-specific processes in the human brain. Neuroreport 11:69–74

    Article  CAS  PubMed  Google Scholar 

  14. Rebaï M, Poiroux S, Bernard C, Lalonde R (2001) Event-related potentials for category-specific information during passive viewing of faces and objects. Int J Neurosci 106:209–226

    Article  PubMed  Google Scholar 

  15. Liu J, Harris A, Kanwisher N (2002) Stages of processing in face perception: an MEG study. Nat Neurosci 5:910–916

    Article  CAS  PubMed  Google Scholar 

  16. Rousselet GA, Macé MJM, Fabre-Thorpe M (2004) Animal and human faces in natural scenes: how specific to human faces is the N170 ERP component. J Vis 4:13–21

    Article  PubMed  Google Scholar 

  17. Joyce C, Rossion B (2005) The face-sensitive N170 and VPP components manifest the same brain processes: the effect of reference electrode site. Clin Neurophysiol 116:2613–2631

    Article  PubMed  Google Scholar 

  18. Itier RJ, Latinus M, Taylor MJ (2006) Face, eye and object early processing: what is the face specificity? NeuroImage 29:667–676

    Article  PubMed  Google Scholar 

  19. Caharel S, Leleu A, Bernard C, Viggiano M-P, Lalonde R, Rebaï M (2013) Early holistic face-like processing of Arcimboldo paintings in the right occipito-temporal cortex: evidence from the N170 ERP component. Int J Psychophysiol 90:157–164

    Article  PubMed  Google Scholar 

  20. Itier RJ, Taylor MJ (2004) N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebr Cortex 14:132–142

    Article  Google Scholar 

  21. Sagiv N, Bentin S (2001) Structural encoding of human and schematic faces: holistic and part-based processes. J Cogn Neurosci 13:937–951

    Article  CAS  PubMed  Google Scholar 

  22. Eimer M, Gosling A, Nicholas S, Kiss M (2011) The N170 component and its links to configural face processing: a rapid neural adaptation study. Brain Res 1376:76–87

    Article  CAS  PubMed  Google Scholar 

  23. Bötzel K, Grüsser OJ (1989) Electric brain potentials evoked by pictures of faces and non-faces: a search for "face-specific" EEG-potentials. Exp Brain Res 77(2):349–360

    Article  PubMed  Google Scholar 

  24. Jeffreys DA (1989) A face-responsive potential recorded from the human scalp. Exp Brain Res 78(1):193–202

    Article  CAS  PubMed  Google Scholar 

  25. Itier RJ, Taylor MJ (2002) Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: a repetition study using ERPs. Neuroimage 15(2):353–372

    Article  PubMed  Google Scholar 

  26. George N, Jemel B, Fiori N, Chaby L, Renault B (2005) Electrophysiological correlates of facial decision: insights from upright and upside-down Mooney-face perception. Brain Res Cogn Brain Res 24(3):663–673

    Article  PubMed  Google Scholar 

  27. Grainger J, Holcomb PJ (2009) An ERP investigation of orthographic priming with relative-position and absolute-position primes. Brain Res 1270:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Proverbio AM, Del Zotto M, Zani A (2007) The emergence of semantic categorization in early visual processing: ERP indices of animal vs. artifact recognition. BMC Neurosci 8:24

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wheatley T, Weinberg A, Looser C, Moran T, Hajcak G (2011) Mind perception: real but not artificial faces sustain neural activity beyond the N170/VPP. PLoS One 6(3):e17960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schweinberger SR, Pickering EC, Jentzsch I, Burton AM, Kaufmann JM (2002) Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions. Brain Res Cogn Brain Res 14(3):398–409

    Article  PubMed  Google Scholar 

  31. Schweinberger SR, Huddy V, Burton AM (2004) N250r: a face-selective brain response to stimulus repetitions. Neuroreport 28:1501–1505

    Article  Google Scholar 

  32. Scott LS, Tanaka JW, Sheinberg DL, Curran T (2006) A reevaluation of the electrophysiological correlates of expert object processing. J Cogn Neurosci 18(9):1453–1465

    Article  PubMed  Google Scholar 

  33. Scott LS, Tanaka JW, Sheinberg DL, Curran T (2008) The role of category learning in the acquisition and retention of perceptual expertise: a behavioral and neurophysiological study. Brain Res 1210:204–215

    Article  CAS  PubMed  Google Scholar 

  34. Churches O, Baron-Cohen S, Ring H (2009) Seeing face-like objects: an event-related potential study. NeuroReport 20(14):1290–1294

    Article  PubMed  Google Scholar 

  35. Rossion B, Jacques C (2008) Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. Neuroimage 39(4):1959–1979

    Article  PubMed  Google Scholar 

  36. Bötzel K, Schulze S, Stodieck SR (1995) Scalp topography and analysis of intracranial sources of face-evoked potentials. Exp Brain Res 104(1):135–143

    Article  PubMed  Google Scholar 

  37. Halgren E, Baudena P, Heit G, Clarke GM, Marinkovic K (1995) Spatiotemporal stages in face and word processing: I. depth-recorded potentials in the human occipital, temporal and parietal cortex. J Physiol 99:1–50

    Google Scholar 

  38. Pierce LJ, Scott LS, Boddington S, Droucker D, Curran T, Tanaka JW (2011) The n250 brain potential to personally familiar and newly learned faces and objects. Front Hum Neurosci 5:111

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc Lond Ser B Biol Sci 361:2109–2128

    Article  Google Scholar 

  40. Diamond R, Carey S (1986) Why faces are and are not special: an effect of expertise. J Exp Psychol Gen 115:107–117

    Article  CAS  PubMed  Google Scholar 

  41. Maurer D, Le Grand R, Mondloch CJ (2002) The many faces of configural processing. Trends Cogn Sci 6:255–260

    Article  PubMed  Google Scholar 

  42. Tanaka JW (2001) The entry point of face recognition: evidence for face expertise. J Exp Psychol Gen 130:534–543

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka JW, Sengco JA (1997) Features and their configuration in face recognition. Mem Cogn 25:583–592

    Article  CAS  Google Scholar 

  44. Mesraoua B, Deleu D, Al Hail H, Melikyan G, Boon P, Haider HA, Asadi-Pooya AA (2019) Electroencephalography in epilepsy: look for what could be beyond the visual inspection. Neurol Sci 40:2287–2291

    Article  PubMed  Google Scholar 

Download references

Funding

The present work was supported by the Research Fund of Ankara Yildirim Beyazit University. Project No: 2656.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülsüm Akdeniz.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was approved by the ethics committee of Ankara Yildirim Beyazit University, Ankara, Turkey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akdeniz, G. Brain activity underlying face and face pareidolia processing: an ERP study. Neurol Sci 41, 1557–1565 (2020). https://doi.org/10.1007/s10072-019-04232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-04232-4

Keywords

Navigation