Skip to main content

Advertisement

Log in

Epilepsy and brain channelopathies from infancy to adulthood

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Genetic brain channelopathies result from inherited or de novo mutations of genes encoding ion channel subunits within the central nervous system. Most neurological channelopathies arise in childhood with paroxysmal or episodic symptoms, likely because of a transient impairment of homeostatic mechanisms regulating membrane excitability, and the prototypical expression of this impairment is epilepsy. Migraine, episodic ataxia and alternating hemiplegia can also occur, as well as chronic phenotypes, such as spinocerebellar ataxias, intellectual disability and autism spectrum disorder. Voltage-gated and ligand-gated channels may be involved. In most cases, a single gene may be associated with a phenotypical spectrum that shows variable expressivity. Different clinical features may arise at different ages and the adult phenotype may be remarkably modified from the syndrome onset in childhood or adolescence. Recognizing the prominent phenotypical traits of brain channelopathies is essential to perform appropriate diagnostic investigations and to provide the better care not only in the paediatric setting but also for adult patients and their caregivers. Herein, we provide an overview of genetic brain channelopathies associated with epilepsy, highlight the different molecular mechanisms and describe the different clinical characteristics which may prompt the clinician to suspect specific syndromes and to possibly establish tailored treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim J-B (2014) Channelopathies. Korean J Pediatr 57:1–18. https://doi.org/10.3345/kjp.2014.57.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kew JNC, Davies CH (2010) Ion channels: from structure to function, 2nd edn. Oxford University Press, Oxford New York

    Google Scholar 

  3. Seitter H, Koschak A (2018) Relevance of tissue specific subunit expression in channelopathies. Neuropharmacology 132:58–70. https://doi.org/10.1016/j.neuropharm.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  4. Ryan DP, Ptáček LJ (2010) Episodic neurological channelopathies. Neuron 68:282–292. https://doi.org/10.1016/j.neuron.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  5. Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, Scheffer IE, Berkovic SF (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11:201–203. https://doi.org/10.1038/ng1095-201

    Article  CAS  PubMed  Google Scholar 

  6. Berkovic SF (2015) Genetics of epilepsy in clinical practice. Epilepsy Curr 15:192–196. https://doi.org/10.5698/1535-7511-15.4.192

    Article  PubMed  PubMed Central  Google Scholar 

  7. Balestrini S, Sisodiya SM (2018) Pharmacogenomics in epilepsy. Neurosci Lett 667:27–39. https://doi.org/10.1016/j.neulet.2017.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Catterall WA (2014) Structure and function of voltage-gated sodium channels at atomic resolution: voltage-gated sodium channels at atomic resolution. Exp Physiol 99:35–51. https://doi.org/10.1113/expphysiol.2013.071969

    Article  CAS  PubMed  Google Scholar 

  9. Escayg A, Goldin AL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms: sodium channel SCN1A and epilepsy. Epilepsia 51:1650–1658. https://doi.org/10.1111/j.1528-1167.2010.02640.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheah CS, Westenbroek RE, Roden WH, Kalume F, Oakley JC, Jansen LA, Catterall WA (2013) Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome. Channels 7:468–472. https://doi.org/10.4161/chan.26023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Claes L, Del-Favero J, Ceulemans B et al (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332. https://doi.org/10.1086/320609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Epi4K Consortium, Epilepsy Phenome/Genome Project (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221. https://doi.org/10.1038/nature12439

    Article  CAS  Google Scholar 

  13. Feng Y-CA, Howrigan DP, Abbott LE et al (2019) Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals. Am J Hum Genet 105:267–282. https://doi.org/10.1016/j.ajhg.2019.05.020

    Article  CAS  Google Scholar 

  14. Marini C, Scheffer IE, Nabbout R, Suls A, de Jonghe P, Zara F, Guerrini R (2011) The genetics of Dravet syndrome: genetics of Dravet syndrome. Epilepsia 52:24–29. https://doi.org/10.1111/j.1528-1167.2011.02997.x

    Article  CAS  PubMed  Google Scholar 

  15. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight G, Scheuer T, Catterall WA (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9:1142–1149. https://doi.org/10.1038/nn1754

    Article  CAS  PubMed  Google Scholar 

  16. Dravet C (2011) The core Dravet syndrome phenotype: core Dravet syndrome. Epilepsia 52:3–9. https://doi.org/10.1111/j.1528-1167.2011.02994.x

    Article  PubMed  Google Scholar 

  17. McIntosh AM, McMahon J, Dibbens LM, Iona X, Mulley JC, Scheffer IE, Berkovic SF (2010) Effects of vaccination on onset and outcome of Dravet syndrome: a retrospective study. Lancet Neurol 9:592–598. https://doi.org/10.1016/S1474-4422(10)70107-1

    Article  CAS  PubMed  Google Scholar 

  18. Reyes IS, Hsieh DT, Laux LC, Wilfong AA (2011) Alleged cases of vaccine encephalopathy rediagnosed years later as Dravet syndrome. Pediatrics 128:e699–e702. https://doi.org/10.1542/peds.2010-0887

    Article  PubMed  Google Scholar 

  19. Scheffer IE (2012) Diagnosis and long-term course of Dravet syndrome. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc 16(Suppl 1):S5–S8. https://doi.org/10.1016/j.ejpn.2012.04.007

    Article  Google Scholar 

  20. Losito E, Kuchenbuch M, Chemaly N et al (2017) Age-related “sleep/nocturnal” tonic and tonic clonic seizure clusters are underdiagnosed in patients with Dravet syndrome. Epilepsy Behav EB 74:33–40. https://doi.org/10.1016/j.yebeh.2017.05.037

    Article  Google Scholar 

  21. Verbeek NE, Wassenaar M, van Campen JS et al (2015) Seizure precipitants in Dravet syndrome: what events and activities are specifically provocative compared with other epilepsies? Epilepsy Behav 47:39–44. https://doi.org/10.1016/j.yebeh.2015.05.008

    Article  PubMed  Google Scholar 

  22. Verbeek N, Kasteleijn-Nolst Trenité D, Wassenaar M et al (2017) Photosensitivity in Dravet syndrome is under-recognized and related to prognosis. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 128:323–330. https://doi.org/10.1016/j.clinph.2016.11.021

    Article  Google Scholar 

  23. Sinoo C, de Lange IM-L, Westers P et al (2019) Behavior problems and health-related quality of life in Dravet syndrome. Epilepsy Behav EB 90:217–227. https://doi.org/10.1016/j.yebeh.2018.11.029

    Article  Google Scholar 

  24. Guerrini R (2012) Dravet syndrome: the main issues. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc 16(Suppl 1):S1–S4. https://doi.org/10.1016/j.ejpn.2012.04.006

    Article  Google Scholar 

  25. Genton P, Velizarova R, Dravet C (2011) Dravet syndrome: the long-term outcome. Epilepsia 52(Suppl 2):44–49. https://doi.org/10.1111/j.1528-1167.2011.03001.x

    Article  PubMed  Google Scholar 

  26. Akiyama M, Kobayashi K, Yoshinaga H, Ohtsuka Y (2010) A long-term follow-up study of Dravet syndrome up to adulthood. Epilepsia 51:1043–1052. https://doi.org/10.1111/j.1528-1167.2009.02466.x

    Article  PubMed  Google Scholar 

  27. Fasano A, Borlot F, Lang AE, Andrade DM (2014) Antecollis and levodopa-responsive parkinsonism are late features of Dravet syndrome. Neurology 82:2250–2251. https://doi.org/10.1212/WNL.0000000000000521

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gitiaux C, Chemaly N, Quijano-Roy S, Barnerias C, Desguerre I, Hully M, Chiron C, Dulac O, Nabbout R (2016) Motor neuropathy contributes to crouching in patients with Dravet syndrome. Neurology 87:277–281. https://doi.org/10.1212/WNL.0000000000002859

    Article  PubMed  Google Scholar 

  29. Russell MB, Ducros A (2011) Sporadic and familial hemiplegic migraine: pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol 10:457–470. https://doi.org/10.1016/S1474-4422(11)70048-5

    Article  PubMed  Google Scholar 

  30. Castro M-J, Stam A, Lemos C, de Vries B, Vanmolkot KR, Barros J, Terwindt GM, Frants RR, Sequeiros J, Ferrari MD, Pereira-Monteiro JM, van den Maagdenberg A (2009) First mutation in the voltage-gated Na v 1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia 29:308–313. https://doi.org/10.1111/j.1468-2982.2008.01721.x

    Article  PubMed  Google Scholar 

  31. Liao Y, Deprez L, Maljevic S, Pitsch J, Claes L, Hristova D, Jordanova A, Ala-Mello S, Bellan-Koch A, Blazevic D, Schubert S, Thomas EA, Petrou S, Becker AJ, de Jonghe P, Lerche H (2010) Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain J Neurol 133:1403–1414. https://doi.org/10.1093/brain/awq057

    Article  Google Scholar 

  32. Howell KB, McMahon JM, Carvill GL, Tambunan D, Mackay MT, Rodriguez-Casero V, Webster R, Clark D, Freeman JL, Calvert S, Olson HE, Mandelstam S, Poduri A, Mefford HC, Harvey AS, Scheffer IE (2015) SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology 85:958–966. https://doi.org/10.1212/WNL.0000000000001926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolff M, Johannesen KM, Hedrich UBS et al (2017) Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. https://doi.org/10.1093/brain/awx054

  34. Nakamura K, Kato M, Osaka H, Yamashita S, Nakagawa E, Haginoya K, Tohyama J, Okuda M, Wada T, Shimakawa S, Imai K, Takeshita S, Ishiwata H, Lev D, Lerman-Sagie T, Cervantes-Barragán DE, Villarroel CE, Ohfu M, Writzl K, Gnidovec Strazisar B, Hirabayashi S, Chitayat D, Myles Reid D, Nishiyama K, Kodera H, Nakashima M, Tsurusaki Y, Miyake N, Hayasaka K, Matsumoto N, Saitsu H (2013) Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 81:992–998. https://doi.org/10.1212/WNL.0b013e3182a43e57

    Article  CAS  PubMed  Google Scholar 

  35. de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, Vulto-van Silfhout A, Koolen DA, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries BB, Brunner HG, Veltman JA, Vissers LE (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367:1921–1929. https://doi.org/10.1056/NEJMoa1206524

    Article  CAS  PubMed  Google Scholar 

  36. Rauch A, Wieczorek D, Graf E et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380:1674–1682. https://doi.org/10.1016/S0140-6736(12)61480-9

    Article  CAS  PubMed  Google Scholar 

  37. D’Gama AM, Pochareddy S, Li M et al (2015) Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 88:910–917. https://doi.org/10.1016/j.neuron.2015.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang Q, Yu L, Ma M, Qi H, Wu Y (2019) Novel SCN2A mutation in a family associated with juvenile-onset myoclonus: case report. Medicine (Baltimore) 98:e14698. https://doi.org/10.1097/MD.0000000000014698

    Article  CAS  Google Scholar 

  39. Schwarz N, Bast T, Gaily E et al (2019) Clinical and genetic spectrum of SCN2A-associated episodic ataxia. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc 23:438–447. https://doi.org/10.1016/j.ejpn.2019.03.001

    Article  CAS  Google Scholar 

  40. Larsen J, Carvill GL, Gardella E, Kluger G, Schmiedel G, Barisic N, Depienne C, Brilstra E, Mang Y, Nielsen JE, Kirkpatrick M, Goudie D, Goldman R, Jähn JA, Jepsen B, Gill D, Döcker M, Biskup S, McMahon J, Koeleman B, Harris M, Braun K, de Kovel CG, Marini C, Specchio N, Djémié T, Weckhuysen S, Tommerup N, Troncoso M, Troncoso L, Bevot A, Wolff M, Hjalgrim H, Guerrini R, Scheffer IE, Mefford HC, Møller RS, EuroEPINOMICS RES Consortium CRP (2015) The phenotypic spectrum of SCN8A encephalopathy. Neurology 84:480–489. https://doi.org/10.1212/WNL.0000000000001211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gardella E, Marini C, Trivisano M, Fitzgerald MP, Alber M, Howell KB, Darra F, Siliquini S, Bölsterli BK, Masnada S, Pichiecchio A, Johannesen KM, Jepsen B, Fontana E, Anibaldi G, Russo S, Cogliati F, Montomoli M, Specchio N, Rubboli G, Veggiotti P, Beniczky S, Wolff M, Helbig I, Vigevano F, Scheffer IE, Guerrini R, Møller RS (2018) The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology 91:e1112–e1124. https://doi.org/10.1212/WNL.0000000000006199

    Article  PubMed  Google Scholar 

  42. Gardella E, Becker F, Møller RS et al (2016) Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation: BFIS, PKD, and SCN8A mutation. Ann Neurol 79:428–436. https://doi.org/10.1002/ana.24580

    Article  CAS  PubMed  Google Scholar 

  43. Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, Larsen LH, Eiberg H, Nothnagel M, Thiele H, Altmüller J, Syrbe S, Merkenschlager A, Bast T, Steinhoff B, Nürnberg P, Mang Y, Bakke Møller L, Gellert P, Heron SE, Dibbens LM, Weckhuysen S, Dahl HA, Biskup S, Tommerup N, Hjalgrim H, Lerche H, Beniczky S, Weber YG (2016) Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 79:428–436. https://doi.org/10.1002/ana.24580

    Article  CAS  PubMed  Google Scholar 

  44. Trivisano M, Pavia GC, Ferretti A et al (2019) Generalized tonic seizures with autonomic signs are the hallmark of SCN8A developmental and epileptic encephalopathy. Epilepsy Behav 96:219–223. https://doi.org/10.1016/j.yebeh.2019.03.043

    Article  PubMed  Google Scholar 

  45. Denis J, Villeneuve N, Cacciagli P, Mignon-Ravix C, Lacoste C, Lefranc J, Napuri S, Damaj L, Villega F, Pedespan JM, Moutton S, Mignot C, Doummar D, Lion-François L, Gataullina S, Dulac O, Martin M, Gueden S, Lesca G, Julia S, Cances C, Journel H, Altuzarra C, Ben Zeev B, Afenjar A, Barth M, Villard L, Milh M (2019) Clinical study of 19 patients with SCN8A-related epilepsy: two modes of onset regarding EEG and seizures. Epilepsia 60:845–856. https://doi.org/10.1111/epi.14727

    Article  CAS  PubMed  Google Scholar 

  46. Hammer MF, Wagnon JL, Mefford HC, Meisler MH (1993) SCN8A-related epilepsy with encephalopathy. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  47. Johannesen KM, Gardella E, Encinas AC, Lehesjoki AE, Linnankivi T, Petersen MB, Lund ICB, Blichfeldt S, Miranda MJ, Pal DK, Lascelles K, Procopis P, Orsini A, Bonuccelli A, Giacomini T, Helbig I, Fenger CD, Sisodiya SM, Hernandez-Hernandez L, Krithika S, Rumple M, Masnada S, Valente M, Cereda C, Giordano L, Accorsi P, Bürki SE, Mancardi M, Korff C, Guerrini R, von Spiczak S, Hoffman-Zacharska D, Mazurczak T, Coppola A, Buono S, Vecchi M, Hammer MF, Varesio C, Veggiotti P, Lal D, Brünger T, Zara F, Striano P, Rubboli G, Møller RS (2019) The spectrum of intermediate SCN8A-related epilepsy. Epilepsia 60:830–844. https://doi.org/10.1111/epi.14705

    Article  CAS  PubMed  Google Scholar 

  48. Frasier CR, Wagnon JL, Bao YO et al (2016) Cardiac arrhythmia in a mouse model of sodium channel SCN8A epileptic encephalopathy. Proc Natl Acad Sci U S A 113:12838–12843. https://doi.org/10.1073/pnas.1612746113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boerma RS, Braun KP, van de Broek MPH et al (2016) Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics 13:192–197. https://doi.org/10.1007/s13311-015-0372-8

    Article  CAS  PubMed  Google Scholar 

  50. Kuang Q, Purhonen P, Hebert H (2015) Structure of potassium channels. Cell Mol Life Sci 72:3677–3693. https://doi.org/10.1007/s00018-015-1948-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    Article  CAS  Google Scholar 

  52. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18:53–55. https://doi.org/10.1038/ng0198-53

    Article  CAS  PubMed  Google Scholar 

  53. Dedek K, Fusco L, Teloy N, Steinlein OK (2003) Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res 54:21–27

    Article  CAS  Google Scholar 

  54. Miceli F, Striano P, Soldovieri MV, Fontana A, Nardello R, Robbiano A, Bellini G, Elia M, Zara F, Taglialatela M, Mangano S (2015) A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability. Epilepsia 56:e15–e20. https://doi.org/10.1111/epi.12887

    Article  CAS  PubMed  Google Scholar 

  55. Weckhuysen S, Mandelstam S, Suls A et al (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25. https://doi.org/10.1002/ana.22644

    Article  CAS  PubMed  Google Scholar 

  56. Ben-Ari Y, Holmes GL (2006) Effects of seizures on developmental processes in the immature brain. Lancet Neurol 5:1055–1063. https://doi.org/10.1016/S1474-4422(06)70626-3

    Article  PubMed  Google Scholar 

  57. Wang J, Li Y (2016) KCNQ potassium channels in sensory system and neural circuits. Acta Pharmacol Sin 37:25–33. https://doi.org/10.1038/aps.2015.131

    Article  CAS  PubMed  Google Scholar 

  58. Millichap JJ, Park KL, Tsuchida T, Ben-Zeev B, Carmant L, Flamini R, Joshi N, Levisohn PM, Marsh E, Nangia S, Narayanan V, Ortiz-Gonzalez XR, Patterson MC, Pearl PL, Porter B, Ramsey K, McGinnis E, Taglialatela M, Tracy M, Tran B, Venkatesan C, Weckhuysen S, Cooper EC (2016) KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol Genet 2:e96. https://doi.org/10.1212/NXG.0000000000000096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan Z (2006) A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 26:2599–2613. https://doi.org/10.1523/JNEUROSCI.4314-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Du W, Bautista JF, Yang H et al (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–738. https://doi.org/10.1038/ng1585

    Article  CAS  PubMed  Google Scholar 

  61. de Kovel CGF, Syrbe S, Brilstra EH et al (2017) Neurodevelopmental disorders caused by de novo variants in KCNB1 genotypes and phenotypes. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2017.1714

  62. Gloyn AL, Diatloff-Zito C, Edghill EL, Bellanné-Chantelot C, Nivot S, Coutant R, Ellard S, Hattersley AT, Robert JJ (2006) KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet 14:824–830. https://doi.org/10.1038/sj.ejhg.5201629

    Article  CAS  PubMed  Google Scholar 

  63. McTague A, Appleton R, Avula S, Cross JH, King MD, Jacques TS, Bhate S, Cronin A, Curran A, Desurkar A, Farrell MA, Hughes E, Jefferson R, Lascelles K, Livingston J, Meyer E, McLellan A, Poduri A, Scheffer IE, Spinty S, Kurian MA, Kneen R (2013) Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum. Brain 136:1578–1591. https://doi.org/10.1093/brain/awt073

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lim CX, Ricos MG, Dibbens LM, Heron SE (2016) KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet 53:217–225. https://doi.org/10.1136/jmedgenet-2015-103508

    Article  CAS  PubMed  Google Scholar 

  65. Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, Reid CA, Venkat A, Younkin DP, Dlugos DJ, Petrovski S, Goldstein DB, Dibbens LM, Scheffer IE, Berkovic SF, Petrou S (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine: KCNT1 and human epilepsy. Ann Neurol 75:581–590. https://doi.org/10.1002/ana.24128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Møller RS, Heron SE, Larsen LHG, Lim CX, Ricos MG, Bayly MA, van Kempen M, Klinkenberg S, Andrews I, Kelley K, Ronen GM, Callen D, McMahon J, Yendle SC, Carvill GL, Mefford HC, Nabbout R, Poduri A, Striano P, Baglietto MG, Zara F, Smith NJ, Pridmore C, Gardella E, Nikanorova M, Dahl HA, Gellert P, Scheffer IE, Gunning B, Kragh-Olsen B, Dibbens LM (2015) Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia 56:e114–e120. https://doi.org/10.1111/epi.13071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Juang J-MJ, Lu T-P, Lai L-C et al (2014) Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome. Sci Rep 4. https://doi.org/10.1038/srep06733

  68. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45. https://doi.org/10.1016/j.neuron.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  69. Imbrici P, Jaffe SL, Eunson LH, Davies NP, Herd C, Robertson R, Kullmann DM, Hanna MG (2004) Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain J Neurol 127:2682–2692. https://doi.org/10.1093/brain/awh301

    Article  Google Scholar 

  70. Sintas C, Carreño O, Fernàndez-Castillo N, Corominas R, Vila-Pueyo M, Toma C, Cuenca-León E, Barroeta I, Roig C, Volpini V, Macaya A, Cormand B (2017) Mutation spectrum in the CACNA1A gene in 49 patients with episodic ataxia. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-02554-x

    Article  CAS  Google Scholar 

  71. Zangaladze A, Asadi-Pooya AA, Ashkenazi A, Sperling MR (2010) Sporadic hemiplegic migraine and epilepsy associated with CACNA1A gene mutation. Epilepsy Behav 17:293–295. https://doi.org/10.1016/j.yebeh.2009.12.017

    Article  PubMed  Google Scholar 

  72. Bruun M, Hjermind LE, Thomsen C et al (2015) Familial hemiplegic migraine type 1 associated with parkinsonism: a case report. Case Rep Neurol 7:84–89. https://doi.org/10.1159/000381827

    Article  PubMed  PubMed Central  Google Scholar 

  73. Reinson K, Õiglane-Shlik E, Talvik I et al (2016) Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A 170:2173–2176. https://doi.org/10.1002/ajmg.a.37678

    Article  CAS  PubMed  Google Scholar 

  74. Myers CT, McMahon JM, Schneider AL et al (2016) De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet 99:287–298. https://doi.org/10.1016/j.ajhg.2016.06.003

    Article  CAS  Google Scholar 

  75. Maejima T, Wollenweber P, Teusner LUC, Noebels JL, Herlitze S, Mark MD (2013) Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci 33:5162–5174. https://doi.org/10.1523/JNEUROSCI.5442-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mark MD, Maejima T, Kuckelsberg D, Yoo JW, Hyde RA, Shah V, Gutierrez D, Moreno RL, Kruse W, Noebels JL, Herlitze S (2011) Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1A mutations. J Neurosci 31:4311–4326. https://doi.org/10.1523/JNEUROSCI.5342-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alonso I, Marques JM, Sousa N, Sequeiros J, Olsson IA, Silveira I (2008) Motor and cognitive deficits in the heterozygous leaner mouse, a Cav2.1 voltage-gated Ca2+ channel mutant. Neurobiol Aging 29:1733–1743. https://doi.org/10.1016/j.neurobiolaging.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  78. Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19:2485–2497. https://doi.org/10.1093/cercor/bhp135

    Article  PubMed  PubMed Central  Google Scholar 

  79. Galliano E, Gao Z, Schonewille M, Todorov B, Simons E, Pop AS, D'Angelo E, van den Maagdenberg A, Hoebeek FE, de Zeeuw CI (2013) Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell Rep 3:1239–1251. https://doi.org/10.1016/j.celrep.2013.03.023

    Article  CAS  PubMed  Google Scholar 

  80. Fujioka S, Sundal C, Wszolek ZK (2013) Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 8:14. https://doi.org/10.1186/1750-1172-8-14

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zamponi GW, Lory P, Perez-Reyes E (2010) Role of voltage-gated calcium channels in epilepsy. Pflüg Arch - Eur J Physiol 460:395–403. https://doi.org/10.1007/s00424-009-0772-x

    Article  CAS  Google Scholar 

  82. Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885. https://doi.org/10.1152/physrev.00029.2008

    Article  CAS  PubMed  Google Scholar 

  83. Benarroch EE (2013) HCN channels: function and clinical implications. Neurology 80:304–310. https://doi.org/10.1212/WNL.0b013e31827dec42

    Article  PubMed  Google Scholar 

  84. Lucariello M, Vidal E, Vidal S, Saez M, Roa L, Huertas D, Pineda M, Dalfó E, Dopazo J, Jurado P, Armstrong J, Esteller M (2016) Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype. Hum Genet 135:1343–1354. https://doi.org/10.1007/s00439-016-1721-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marini C, Porro A, Rastetter A, Dalle C, Rivolta I, Bauer D, Oegema R, Nava C, Parrini E, Mei D, Mercer C, Dhamija R, Chambers C, Coubes C, Thévenon J, Kuentz P, Julia S, Pasquier L, Dubourg C, Carré W, Rosati A, Melani F, Pisano T, Giardino M, Innes AM, Alembik Y, Scheidecker S, Santos M, Figueiroa S, Garrido C, Fusco C, Frattini D, Spagnoli C, Binda A, Granata T, Ragona F, Freri E, Franceschetti S, Canafoglia L, Castellotti B, Gellera C, Milanesi R, Mancardi MM, Clark DR, Kok F, Helbig KL, Ichikawa S, Sadler L, Neupauerová J, Laššuthova P, Šterbová K, Laridon A, Brilstra E, Koeleman B, Lemke JR, Zara F, Striano P, Soblet J, Smits G, Deconinck N, Barbuti A, DiFrancesco D, LeGuern E, Guerrini R, Santoro B, Hamacher K, Thiel G, Moroni A, DiFrancesco J, Depienne C (2018) HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain 141:3160–3178. https://doi.org/10.1093/brain/awy263

    Article  PubMed  Google Scholar 

  86. EuroEPINOMICS RES Consortium, Nava C, Dalle C et al (2014) De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 46:640–645. https://doi.org/10.1038/ng.2952

    Article  CAS  Google Scholar 

  87. DiFrancesco JC, Castellotti B, Milanesi R, Ragona F, Freri E, Canafoglia L, Franceschetti S, Ferrarese C, Magri S, Taroni F, Costa C, Labate A, Gambardella A, Solazzi R, Binda A, Rivolta I, di Gennaro G, Casciato S, D'Incerti L, Barbuti A, DiFrancesco D, Granata T, Gellera C (2019) HCN ion channels and accessory proteins in epilepsy: genetic analysis of a large cohort of patients and review of the literature. Epilepsy Res 153:49–58. https://doi.org/10.1016/j.eplepsyres.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  88. De Fusco M, Marconi R, Silvestri L et al (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33:192–196. https://doi.org/10.1038/ng1081

    Article  CAS  PubMed  Google Scholar 

  89. Vanmolkot KRJ, Kors EE, Hottenga J-J, Terwindt GM, Haan J, Hoefnagels WA, Black DF, Sandkuijl LA, Frants RR, Ferrari MD, van den Maagdenberg A (2003) Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol 54:360–366. https://doi.org/10.1002/ana.10674

    Article  CAS  PubMed  Google Scholar 

  90. Hirose S, Okada M, Kaneko S, Mitsudome A (2000) Are some idiopathic epilepsies disorders of ion channels?: A working hypothesis. Epilepsy Res 41:191–204

    Article  CAS  Google Scholar 

  91. Provini F, Plazzi G, Tinuper P et al (1999) Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. Brain J Neurol 122(Pt 6):1017–1031

    Article  Google Scholar 

  92. Steinlein OK, Kaneko S, Hirose S (2012) Nicotinic acetylcholine receptor mutations. In: Noebels JL, Avoli M, Rogawski MA et al (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. National Center for Biotechnology Information (US), Bethesda

    Google Scholar 

  93. Nobili L, Proserpio P, Combi R, Provini F, Plazzi G, Bisulli F, Tassi L, Tinuper P (2014) Nocturnal frontal lobe epilepsy. Curr Neurol Neurosci Rep 14:424. https://doi.org/10.1007/s11910-013-0424-6

    Article  PubMed  Google Scholar 

  94. Puligheddu M, Melis M, Pillolla G et al (2017) Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy. Epilepsia 58:1762–1770. https://doi.org/10.1111/epi.13863

    Article  CAS  PubMed  Google Scholar 

  95. Johannesen K, Marini C, Pfeffer S et al (2016) Phenotypic spectrum of GABRA1: from generalized epilepsies to severe epileptic encephalopathies. Neurology 87:1140–1151. https://doi.org/10.1212/WNL.0000000000003087

    Article  CAS  PubMed  Google Scholar 

  96. Roden WH, Peugh LD, Jansen LA (2010) Altered GABAA receptor subunit expression and pharmacology in human Angelman syndrome cortex. Neurosci Lett 483:167–172. https://doi.org/10.1016/j.neulet.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438:185–192. https://doi.org/10.1038/nature04089

    Article  CAS  PubMed  Google Scholar 

  98. Carvill GL, Regan BM, Yendle SC, O'Roak BJ, Lozovaya N, Bruneau N, Burnashev N, Khan A, Cook J, Geraghty E, Sadleir LG, Turner SJ, Tsai MH, Webster R, Ouvrier R, Damiano JA, Berkovic SF, Shendure J, Hildebrand MS, Szepetowski P, Scheffer IE, Mefford HC (2013) GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 45:1073–1076. https://doi.org/10.1038/ng.2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, Golas G, Simeonov DR, Holloman C, Tankovic A, Karamchandani MM, Schreiber JM, Mullikin JC, PhD for the NISC Comparative Sequencing Program, Tifft CJ, Toro C, Boerkoel CF, Traynelis SF, Gahl WA (2014) GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 1:190–198. https://doi.org/10.1002/acn3.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lemke JR, Hendrickx R, Geider K, Laube B, Schwake M, Harvey RJ, James VM, Pepler A, Steiner I, Hörtnagel K, Neidhardt J, Ruf S, Wolff M, Bartholdi D, Caraballo R, Platzer K, Suls A, de Jonghe P, Biskup S, Weckhuysen S (2014) GRIN2B mutations in west syndrome and intellectual disability with focal epilepsy: GRIN2B mutations in epilepsy. Ann Neurol 75:147–154. https://doi.org/10.1002/ana.24073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Andreoli V, De Marco EV, Trecroci F et al (2014) Potential involvement of GRIN2B encoding the NMDA receptor subunit NR2B in the spectrum of Alzheimer’s disease. J Neural Transm Vienna Austria 1996 121:533–542. https://doi.org/10.1007/s00702-013-1125-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Bartolini.

Ethics declarations

The Authors state that this work has not received any funding and declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online resource 1

EEG changes at different ages in an adult patient with Dravet syndrome and drug-resistant seizures (personal observation, routine EEG bipolar montage, high-pass filter 1.6 Hz, low-pass filter 70 Hz, amplitude sensitivity 100 microV/cm). A. Mild slowing of background activity at 7–7.5 Hz, short electrographic seizure arising in the right frontotemporal regions (20 years of age). B. Bilateral diffuse slow activity at 5.5–6 Hz with rare sharp waves in the right frontotemporal regions (25 years of age). C. Slow background activity at 6–7 Hz with abundant interictal discharges, especially in frontotemporal regions bilaterally and over the midline channels (26 year of age). D. Mild slowing of background activity at 7–7.5 Hz, persisting sharp waves in the right temporal regions (32 years of age) (PNG 3612 kb)

High Resolution Image (TIFF 13011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolini, E., Campostrini, R., Kiferle, L. et al. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci 41, 749–761 (2020). https://doi.org/10.1007/s10072-019-04190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-04190-x

Keywords

Navigation