Skip to main content

Advertisement

Log in

Beneficial effects of Gelsemium-based treatment against paclitaxel-induced painful symptoms

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Chemotherapeutic drugs induce various side effects including painful peripheral neuropathy that represents a major concern. The widely used anticancer drug paclitaxel causes neurological side effects such as burning pain, allodynia, and hyperalgesia. Neuroprotective substances that may effectively counteract paclitaxel-induced neuropathic symptoms are needed. Here, we investigated the potential of Gelsemium sempervirens (GS) to counteract paclitaxel-evoked painful neuropathy in rats. Using the von Frey hair and acetone behavioral tests, we investigated the potential of GS centesimal (C) dilutions 3, 5, and 9C to prevent or to correct paclitaxel-induced cold allodynia and mechanical allodynia/hyperalgesia involved in neuropathic pain. We found that a prophylactic or corrective treatment with GS dilutions prevented or suppressed PAC-evoked cold allodynia and mechanical allodynia/hyperalgesia, by reversing to normal, decreased cold thermal and mechanical pain thresholds of PAC-treated rats. In particular, preventive or corrective treatments with GS dilution 3C counteracted PAC-evoked allodynic and hyperalgesic responses. Also, GS dilution 5C (in a lesser extent than 3C) significantly reduced PAC-induced mechanical allodynia/hyperalgesia while GS dilution 9C was ineffective. PAC-evoked neuropathic symptoms were efficiently reduced after 1 week treatment with GS dilutions 3 or 5C and the beneficial action increased after 2 weeks. GS dilutions, particularly 3C, also counteracted or prevented PAC-induced sciatic nerve axon alterations and decreased the density of intraepidermal nerve fibers. Altogether, these results obtained in the rat preclinical model suggest that GS dilution-based treatment may constitute an interesting option to explore for the long-term management of pain without undesirable effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C:

Centesimal

GS:

Gelsemium sempervirens

PAC:

Paclitaxel

SC:

Spinal cord

W:

Water

References

  1. Balayssac D, Ferrier J, Descoeur J, Ling B, Pezet D, Eschalier A, Authier N (2011) Chemotherapy-induced peripheral neuropathies: from clinical relevance to preclinical evidence. Expert Opin Drug Saf 10:407–417

    Article  CAS  PubMed  Google Scholar 

  2. Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249:9–17

    Article  CAS  PubMed  Google Scholar 

  3. Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155:2461–2470

    Article  PubMed  Google Scholar 

  4. Miltenburg NC, Boogerd W (2014) Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev 40:872–882

    Article  CAS  PubMed  Google Scholar 

  5. Brewer JR, Morrison G, Dolan ME, Fleming GF (2016) Chemotherapy-induced peripheral neuropathy: current status and progress. Gynecol Oncol 140:176–183

    Article  CAS  PubMed  Google Scholar 

  6. Authier N, Balayssac D, Marchand F, Ling B, Zangarelli A, Descoeur J, Coudore F, Bourinet E, Eschalier A (2009) Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurotherapeutics 6:620–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR (2004) Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 109:132–142

    Article  CAS  PubMed  Google Scholar 

  8. Verstappen CC, Heimans JJ, Hoekman K, Postma TJ (2003) Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs 63:1549–1563

    Article  CAS  Google Scholar 

  9. Fehrenbacher JC (2015) Chemotherapy-induced peripheral neuropathy. Prog Mol Biol Transl Sci 131:471–508

    Article  PubMed  Google Scholar 

  10. Cai J, Zheng T, Masood R, Smith DL, Hinton DR, Kim CN, Fang G, Bhalla K, Gill PS (2000) Paclitaxel induces apoptosis in AIDS-related Kaposi’s sarcoma cells. Sarcoma 4:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Croom KF, Dhillon S (2011) Bevacizumab: a review of its use in combination with paclitaxel or capecitabine as first-line therapy for HER2-negative metastatic breast cancer. Drugs 71:2213–2229

    Article  PubMed  Google Scholar 

  12. Holmes FA, Walters RS, Theriault RL, Forman AD, Newton LK, Raber MN, Buzdar AU, Frye DK, Hortobagyi GN (1991) Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. J Natl Cancer Inst 83:1797–1805

    Article  CAS  PubMed  Google Scholar 

  13. Le XF, Bast RC Jr (2011) Src family kinases and paclitaxel sensitivity. Cancer Biol Ther 12:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh S, Dash AK (2009) Paclitaxel in cancer treatment: perspectives and prospects of its delivery challenges. Crit Rev Ther Drug Carrier Syst 26:333–372

    Article  CAS  PubMed  Google Scholar 

  15. Young M, Plosker GL (2001) Paclitaxel: a pharmacoeconomic review of its use in the treatment of ovarian cancer. Pharmacoeconomics 19:1227–1259

    Article  CAS  PubMed  Google Scholar 

  16. Cavaletti G, Bogliun G, Marzorati L, Zincone A, Marzola M, Colombo N, Tredici G (1995) Peripheral neurotoxicity of taxol in patients previously treated with cisplatin. Cancer 75:1141–1150

    Article  CAS  PubMed  Google Scholar 

  17. Chaudhry V, Rowinsky EK, Sartorius SE, Donehower RC, Cornblath DR (1994) Peripheral neuropathy from taxol and cisplatin combination chemotherapy: clinical and electrophysiological studies. Ann Neurol 35:304–311

    Article  CAS  PubMed  Google Scholar 

  18. Forsyth PA, Balmaceda C, Peterson K, Seidman AD, Brasher P, DeAngelis LM (1997) Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J Neuro-Oncol 35:47–53

    Article  CAS  Google Scholar 

  19. Gordon AN, Stringer CA, Matthews CM, Willis DL, Nemunaitis J (1997) Phase I dose escalation of paclitaxel in patients with advanced ovarian cancer receiving cisplatin: rapid development of neurotoxicity is dose-limiting. J Clin Oncol 15:1965–1973

    Article  CAS  PubMed  Google Scholar 

  20. Polomano RC, Mannes AJ, Clark US, Bennett GJ (2001) A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94:293–304

    Article  CAS  PubMed  Google Scholar 

  21. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC (1993) Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 20:1–15

    CAS  PubMed  Google Scholar 

  22. van den Bent MJ, van Raaij-van den Aarssen VJ, Verweij J, Doorn PA, and Sillevis Smitt PA (1997) Progression of paclitaxel-induced neuropathy following discontinuation of treatment. Muscle Nerve 20:750–752

  23. Durand JP, Alexandre J, Guillevin L, Goldwasser F (2005) Clinical activity of venlafaxine and topiramate against oxaliplatin-induced disabling permanent neuropathy. Anti-Cancer Drugs 16:587–591

    Article  CAS  PubMed  Google Scholar 

  24. Gamelin L, Boisdron-Celle M, Delva R, Guerin-Meyer V, Ifrah N, Morel A, Gamelin E (2004) Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-fluorouracil and leucovorin for advanced colorectal cancer. Clin Cancer Res 10:4055–4061

    Article  CAS  PubMed  Google Scholar 

  25. Lang E, Hord AH, Denson D (1996) Venlafaxine hydrochloride (Effexor) relieves thermal hyperalgesia in rats with an experimental mononeuropathy. Pain 68:151–155

    Article  CAS  PubMed  Google Scholar 

  26. Ling B, Authier N, Balayssac D, Eschalier A, Coudore F (2007) Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat. Pain 128:225–234

    Article  CAS  PubMed  Google Scholar 

  27. Marchand F, Alloui A, Chapuy E, Jourdan D, Pelissier T, Ardid D, Hernandez A, Eschalier A (2003) Evidence for a monoamine mediated, opioid-independent, antihyperalgesic effect of venlafaxine, a non-tricyclic antidepressant, in a neurogenic pain model in rats. Pain 103:229–235

    Article  CAS  PubMed  Google Scholar 

  28. Galie E, Villani V, Terrenato I, Pace A (2017) Tapentadol in neuropathic pain cancer patients: a prospective open label study. Neurol Sci 38:1747–1752

    Article  PubMed  Google Scholar 

  29. Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG (2010) Cellular and functional evidence for a protective action of neurosteroids against vincristine chemotherapy-induced painful neuropathy. Cell Mol Life Sci 67:3017–3034

    Article  CAS  PubMed  Google Scholar 

  30. Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG (2011) Allopregnanolone prevents and suppresses oxaliplatin-evoked painful neuropathy: multi-parametric assessment and direct evidence. Pain 152:170–181

    Article  CAS  PubMed  Google Scholar 

  31. Meyer L, Patte-Mensah C, Taleb O, Mensah-Nyagan AG (2013) Neurosteroid 3alpha-androstanediol efficiently counteracts paclitaxel-induced peripheral neuropathy and painful symptoms. PLoS One 8:e80915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jevtovic-Todorovic V, Covey DF, Todorovic SM (2009) Are neuroactive steroids promising therapeutic agents in the management of acute and chronic pain? Psychoneuroendocrinology 34:S178–S185

    Article  CAS  PubMed  Google Scholar 

  33. Pathirathna S, Brimelow BC, Jagodic MM, Krishnan K, Jiang X, Zorumski CF, Mennerick S, Covey DF, Todorovic SM, Jevtovic-Todorovic V (2005) New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5alpha-reduced neuroactive steroids. Pain 114:429–443

    Article  CAS  PubMed  Google Scholar 

  34. Pathirathna S, Todorovic SM, Covey DF, Jevtovic-Todorovic V (2005) 5alpha-reduced neuroactive steroids alleviate thermal and mechanical hyperalgesia in rats with neuropathic pain. Pain 117:326–339

    Article  CAS  PubMed  Google Scholar 

  35. Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG (2014) Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 113:70–78

    Article  CAS  PubMed  Google Scholar 

  36. Venard C, Boujedaini N, Belon P, Mensah-Nyagan AG, Patte-Mensah C (2008) Regulation of neurosteroid allopregnanolone biosynthesis in the rat spinal cord by glycine and the alkaloidal analogs strychnine and gelsemine. Neuroscience 153:154–161

    Article  CAS  PubMed  Google Scholar 

  37. Venard C, Boujedaini N, Mensah-Nyagan AG, Patte-Mensah C (2011) Comparative analysis of gelsemine and Gelsemium sempervirens activity on neurosteroid allopregnanolone formation in the spinal cord and limbic system. Evid Based Complement Alternat Med 2011:407617

  38. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  CAS  PubMed  Google Scholar 

  39. Bremner JD (1999) Alterations in brain structure and function associated with post-traumatic stress disorder. Semin Clin Neuropsychiatry 4:249–255

    CAS  PubMed  Google Scholar 

  40. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  CAS  PubMed  Google Scholar 

  41. Haines DE, Mihailoff GA, Yezierski RP (1997) The spinal cord. In: Haines DE (ed) Fundamental neuroscience. Churchill Livingstone Inc., New York, pp 129–141

    Google Scholar 

  42. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  CAS  PubMed  Google Scholar 

  43. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  CAS  PubMed  Google Scholar 

  44. Rauch SL, Shin LM, Wright CI (2003) Neuroimaging studies of amygdala function in anxiety disorders. Ann N Y Acad Sci 985:389–410

    Article  PubMed  Google Scholar 

  45. Qiu HQ, Xu Y, Jin GL, Yang J, Liu M, Li SP, Yu CX (2015) Koumine enhances spinal cord 3alpha-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain 11:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu YE, Li YD, Luo YJ, Wang TX, Wang HJ, Chen SN, Qu WM, Huang ZL (2015) Gelsemine alleviates both neuropathic pain and sleep disturbance in partial sciatic nerve ligation mice. Acta Pharmacol Sin 36:1308–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu Y, Qiu HQ, Liu H, Liu M, Huang ZY, Yang J, Su YP, Yu CX (2012) Effects of koumine, an alkaloid of Gelsemium elegans Benth., on inflammatory and neuropathic pain models and possible mechanism with allopregnanolone. Pharmacol Biochem Behav 101:504–514

    Article  CAS  PubMed  Google Scholar 

  48. Zhang JY, Gong N, Huang JL, Guo LC, Wang YX (2013) Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal alpha3 glycine receptors. Pain 154:2452–2462

    Article  CAS  PubMed  Google Scholar 

  49. Zhang JY, Wang YX (2015) Gelsemium analgesia and the spinal glycine receptor/allopregnanolone pathway. Fitoterapia 100:35–43

    Article  CAS  PubMed  Google Scholar 

  50. Jouany J, Poitevin B, Saint-Jean Y, Masson JL (2003) Gelsemium sempervirens. In: Boiron (ed) Pharmacologie et Matière Médicale Homéopathique. CEDH, Paris, pp 337–383

    Google Scholar 

  51. Meyer L, Venard C, Schaeffer V, Patte-Mensah C, Mensah-Nyagan AG (2008) The biological activity of 3alpha-hydroxysteroid oxido-reductase in the spinal cord regulates thermal and mechanical pain thresholds after sciatic nerve injury. Neurobiol Dis 30:30–41

    Article  CAS  PubMed  Google Scholar 

  52. Patte-Mensah C, Meyer L, Schaeffer V, Mensah-Nyagan AG (2010) Selective regulation of 3 alpha-hydroxysteroid oxido-reductase expression in dorsal root ganglion neurons: a possible mechanism to cope with peripheral nerve injury-induced chronic pain. Pain 150:522–534

    Article  CAS  PubMed  Google Scholar 

  53. Lauria G, Lombardi R, Borgna M, Penza P, Bianchi R, Savino C, Canta A, Nicolini G, Marmiroli P, Cavaletti G (2005) Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. J Peripher Nerv Syst 10:202–208

    Article  PubMed  Google Scholar 

  54. Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217

    Article  CAS  PubMed  Google Scholar 

  55. Shaw G, Osborn M, Weber K (1986) Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments. Eur J Cell Biol 42:1–9

    CAS  PubMed  Google Scholar 

  56. Siau C, Xiao W, Bennett GJ (2006) Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol 201:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288:1769–1772

    Article  CAS  PubMed  Google Scholar 

  58. Saade NE, Jabbur SJ (2008) Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 86:22–47

    Article  PubMed  Google Scholar 

  59. Thompson JM, Neugebauer V (2017) Amygdala plasticity and pain. Pain Res Manag 2017:8296501

  60. Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80

    Article  CAS  PubMed  Google Scholar 

  61. Chirumbolo S, Bjorklund G (2018) Homeopathic dilutions, Hahnemann principles, and the solvent issue: must we address ethanol as a “homeopathic” or a “chemical” issue? Homeopathy 107:40–44

    Article  PubMed  Google Scholar 

  62. Finocchi C, Ferrari M (2011) Female reproductive steroids and neuronal excitability. Neurol Sci 32(Suppl 1):S31–S35

    Article  PubMed  Google Scholar 

  63. Guille C, Spencer S, Cavus I, Epperson CN (2008) The role of sex steroids in catamenial epilepsy and premenstrual dysphoric disorder: implications for diagnosis and treatment. Epilepsy Behav 13:12–24

    Article  PubMed  PubMed Central  Google Scholar 

  64. Patte-Mensah C, Kibaly C, Mensah-Nyagan AG (2005) Substance P inhibits progesterone conversion to neuroactive metabolites in spinal sensory circuit: a potential component of nociception. Proc Natl Acad Sci U S A 102:9044–9049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Patte-Mensah C, Li S, Mensah-Nyagan AG (2004) Impact of neuropathic pain on the gene expression and activity of cytochrome P450side-chain-cleavage in sensory neural networks. Cell Mol Life Sci 61:2274–2284

    Article  CAS  PubMed  Google Scholar 

  66. Patte-Mensah C, Penning TM, Mensah-Nyagan AG (2004) Anatomical and cellular localization of neuroactive 5 alpha/3 alpha-reduced steroid-synthesizing enzymes in the spinal cord. J Comp Neurol 477:286–299

    Article  CAS  PubMed  Google Scholar 

  67. Hwang BY, Kim ES, Kim CH, Kwon JY, Kim HK (2012) Gender differences in paclitaxel-induced neuropathic pain behavior and analgesic response in rats. Korean J Anesthesiol 62:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N, Glaser SE, Vallejo R (2008) Opioid complications and side effects. Pain Physician 11:S105–S120

    PubMed  Google Scholar 

  69. Carter GT, Duong V, Ho S, Ngo KC, Greer CL, Weeks DL (2014) Side effects of commonly prescribed analgesic medications. Phys Med Rehabil Clin N Am 25:457–470

    Article  PubMed  Google Scholar 

  70. Paris A, Schmidlin S, Mouret S, Hodaj E, Marijnen P, Boujedaini N, Polosan M, Cracowski JL (2012) Effect of Gelsemium 5CH and 15CH on anticipatory anxiety: a phase III, single-centre, randomized, placebo-controlled study. Fundam Clin Pharmacol 26:751–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the University of Strasbourg and INSERM.

Funding

The study was granted by the University of Strasbourg and INSERM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayikoé-Guy Mensah-Nyagan or Laurence Meyer.

Ethics declarations

Conflict of interest

BOIRON financially supported the project, provided the treatments, but did not take legal responsibility for the study, which was sponsored by the University of Strasbourg and INSERM. NB from BOIRON contributed to the study design but did not participate in the realization of the study or in data analysis and interpretation.

Ethical approval

Animal care and manipulations were performed according to The European Community Council Directives (2010/63/UE) and under the supervision of authorized investigators. All experiments performed minimized the number of animals used and their suffering in accordance with the Alsace Department of Veterinary Public Health Guide for the Care and Use of Laboratory Animals. A national project authorization was delivered by the French Ministry of Higher Education and Research and by CREMEAS a local ethical committee (Project authorization number 9373). The experiments also followed the International Association for the Study of Pain ethical guidelines.

Additional information

Ayikoé-Guy Mensah-Nyagan and Laurence Meyer have co-seniority

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitet, L., Patte-Mensah, C., Boujedaini, N. et al. Beneficial effects of Gelsemium-based treatment against paclitaxel-induced painful symptoms. Neurol Sci 39, 2183–2196 (2018). https://doi.org/10.1007/s10072-018-3575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3575-z

Keywords

Navigation