Skip to main content

Advertisement

Log in

Circulating irisin and chemerin levels as predictors of seizure control in children with idiopathic epilepsy

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Irisin and chemerin peptides expression are triggered by hypoxia and involved in activation of inflammatory cascades in various organs including the brain; however, their role in epilepsy is not fully illustrated. This study aims to explore the predictive role of irisin and chemerin for seizure control in children with idiopathic epilepsy. This cross-sectional comparative study included 50 children with idiopathic epilepsy; 25 of them had controlled seizures over the previous 6 months and 30 age- and sex-matched healthy children as controls. Epilepsy characteristics, seizure severity Chalfont score, and response to medications were assessed in relation to serum irisin and chemerin levels. In comparison to healthy controls, serum chemerin and irisin levels were significantly higher in children with idiopathic epilepsy especially those with uncontrolled seizures. Serum chemerin and irisin levels had significant positive correlation with seizure severity Chalfont score and the duration of epilepsy. Elevated Chalfont score (OR 3.19), serum chemerin (OR 2.01), and irisin (OR 2.03) are predictors of uncontrolled seizures. Circulating chemerin and irisin have 80% and 76% sensitivity and 88% and 92% specificity at cutoff point > 191.38 ng/ml and > 151.2 ng/ml respectively for prediction of uncontrolled seizures in children with idiopathic epilepsy. Elevated circulating level of irisin and chemerin may predict poor seizure control in children with idiopathic epilepsy suggesting the role of hypoxia-triggered neuroinflammation in the pathogenesis of childhood idiopathic epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131(2):211–234. https://doi.org/10.1007/s00401-015-1481-5

    Article  PubMed  CAS  Google Scholar 

  2. Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediat Inflamm 2014:901902. https://doi.org/10.1155/2014/901902

    Article  CAS  Google Scholar 

  3. Weigert J, Neumeier M, Wanninger J, Filarsky M, Bauer S, Wiest R, Farkas S, Scherer MN, Schäffler A, Aslanidis C, Schölmerich J, Buechler C (2010) Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin Endocrinol (Oxf) 72(3):342–348. https://doi.org/10.1111/j.1365-2265.2009.03664.x

    Article  CAS  Google Scholar 

  4. Rourke JL, Dranse HJ, Sinal CJ (2013) Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes Rev 14(3):245–262. https://doi.org/10.1111/obr.12009

    Article  PubMed  CAS  Google Scholar 

  5. Chua SK, Shyu KG, Lin YF, Lo HM, Wang BW, Chang H, Lien LM (2016) Tumor necrosis factor-alpha and the ERK pathway drive chemerin expression in response to hypoxia in cultured human coronary artery endothelial cells. PLoS One 11(10):e0165613. https://doi.org/10.1371/journal.pone.0165613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dun SL, Lyu RM, Chen YH, Chang JK, Luo JJ, Dun NJ (2013) Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience 240:155–162. https://doi.org/10.1016/j.neuroscience.2013.02.050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhang J, Zhang W (2016) Can irisin be a linker between physical activity and brain function? Biomol Concepts 7(4):253–258. https://doi.org/10.1515/bmc-2016-0012.

    Article  PubMed  CAS  Google Scholar 

  8. Duncan JS, Sander JW (1991) The chalfont seizure severity scale. J Neurol Neurosurg Psychiatry 54(10):873–876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshé SL, Nordli D, Plouin P, Scheffer IE (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51(4):676–685. https://doi.org/10.1111/j.1528-1167.2010.02522.x

    Article  PubMed  Google Scholar 

  10. Zabel BA, Allen SJ, Kulig P, Allen JA, Cichy J, Handel TM, Butcher EC (2005) Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem 280(41):34661–34666. https://doi.org/10.1074/jbc.M504868200

    Article  PubMed  CAS  Google Scholar 

  11. Yang Z, Chen X, Chen Y et al (2015) Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice. Int J Clin Exp Pathol 8(6):6490–6497

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Mazarati AM, Lewis ML, Pittman QJ (2017) Neurobehavioral comorbidities of epilepsy: role of inflammation. Epilepsia 58(3):48–56. https://doi.org/10.1111/epi.13786

    Article  PubMed  Google Scholar 

  13. Mattern A, Zellmann T, Beck-Sickinger AG (2014) Processing, signaling, and physiological function of chemerin. IUBMB Life 66(1):19–26. https://doi.org/10.1002/iub.1242

    Article  PubMed  CAS  Google Scholar 

  14. Stojek M (2017) The role of chemerin in human disease. Postepy Hig Med Dosw (Online) 71(0):110–117

    Article  Google Scholar 

  15. Zhao D, Bi G, Feng J, Huang R, Chen X (2015) Association of serum chemerin levels with acute ischemic stroke and carotid artery atherosclerosis in a Chinese population. Med Sci Monit 21:3121–3128. https://doi.org/10.12659/MSM.895866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tomalka-Kochanowska J, Baranowska B, Wolinska-Witort E, Uchman D, Litwiniuk A, Martynska L, Kalisz M, Bik W, Kochanowski J (2014) Plasma chemerin levels in patients with multiple sclerosis. Neuroendocrinol Lett 35(3):218–223

    PubMed  CAS  Google Scholar 

  17. Graham KL, Zabel BA, Loghavi S, Zuniga LA, Ho PP, Sobel RA, Butcher EC (2009) Chemokine-like receptor-1 expression by central nervous system-infiltrating leukocytes and involvement in a model of autoimmune demyelinating disease. J Immunol 183(10):6717–6723. https://doi.org/10.4049/jimmunol.0803435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Graham KL, Zhang JV, Lewén S, Burke TM, Dang T, Zoudilova M, Sobel RA, Butcher EC, Zabel BA (2014) A novel CMKLR1 small molecule antagonist suppresses CNS autoimmune inflammatory disease. Platten M, ed. PLoS One 9(12):e112925. https://doi.org/10.1371/journal.pone.0112925

  19. Godlewska U, Brzoza P, Sroka A, Majewski P, Jentsch H, Eckert M, Eick S, Potempa J, Zabel BA, Cichy J (2017) Antimicrobial and attractant roles for chemerin in the oral cavity during inflammatory gum disease. Front Immunol 8:353. https://doi.org/10.3389/fimmu.2017.00353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Farrell JS, Colangeli R, Wolff MD, Wall AK, Phillips TJ, George A, Federico P, Teskey GC (2017) Postictal hypoperfusion/hypoxia provides the foundation for a unified theory of seizure-induced brain abnormalities and behavioral dysfunction. Epilepsia 58(9):1493–1501. https://doi.org/10.1111/epi.13827

    Article  PubMed  CAS  Google Scholar 

  21. Kennedy JD, Seyal M (2015) Respiratory pathophysiology with seizures and implications for sudden unexpected death in epilepsy. J Clin Neurophysiol 32(1):10–13. https://doi.org/10.1097/WNP.0000000000000142

    Article  PubMed  Google Scholar 

  22. Zhao YT, Wang H, Zhang S, du J, Zhuang S, Zhao TC (2016) Irisin ameliorates hypoxia/reoxygenation-induce d injury through modulation of histone deacetylase 4. PLoS One 11(11):e0166182. https://doi.org/10.1371/journal.pone.0166182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mazur-Bialy AI, Pocheć E, Zarawski M (2017) Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. Andrade P, Valentão P, eds. Int J Mol Sci 18(4):701. https://doi.org/10.3390/ijms18040701

  24. Wrann CD (2015) FNDC5/irisin—their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plast 1(1):55–61. https://doi.org/10.3233/BPL-150019

    Article  PubMed  PubMed Central  Google Scholar 

  25. Peng J, Deng X, Huang W, Yu JH, Wang JX, Wang JP, Yang SB, Liu X, Wang L, Zhang Y, Zhou XY, Yang H, He YZ, Xu FY (2017) Irisin protects against neuronal injury induced by oxygen-glucose deprivation in part depends on the inhibition of ROS-NLRP3 inflammatory signaling pathway. Mol Immunol 91:185–194. https://doi.org/10.1016/j.molimm.2017.09.014

    Article  PubMed  CAS  Google Scholar 

  26. Li DJ, Li YH, Yuan HB, Qu LF, Wang P (2017) The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism 68:31–42. https://doi.org/10.1016/j.metabol.2016.12.003

    Article  PubMed  CAS  Google Scholar 

  27. Moshé SL, Perucca E, Ryvlin P, Tomson T (2015) Epilepsy: new advances. Lancet 385(9971):884–898. https://doi.org/10.1016/S0140-6736(14)60456-6

    Article  PubMed  Google Scholar 

  28. Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zylla S, Pietzner M, Kühn JP, Völzke H, Dörr M, Nauck M, Friedrich N (2017) Serum chemerin is associated with inflammatory and metabolic parameters—results of a population-based study. Obesity (Silver Spring) 25(2):468–475. https://doi.org/10.1002/oby.21735

    Article  CAS  Google Scholar 

  30. Wahab F, Shahab M, Behr R (2016) Hypothesis: irisin is a metabolic trigger for the activation of the neurohormonal axis governing puberty onset. Med Hypotheses 95:1–4. https://doi.org/10.1016/j.mehy.2016.08.003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Marwa Elhady contributed to data acquisition from patients with epilepsy and EEG interpretation. Heba S. Gafar contributed to data acquisition from healthy controls and drafting the manuscript. Eman R. Youness contributed to laboratory investigations. Rehab S.I Mostafa and Ali Abdel Aziz contributed to analysis and interpretation of data and revising the manuscript. All authors contributed to conception and design and contributed to the final approval of the completed manuscript.

Corresponding author

Correspondence to Marwa Elhady.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhady, M., Youness, E.R., Gafar, H.S. et al. Circulating irisin and chemerin levels as predictors of seizure control in children with idiopathic epilepsy. Neurol Sci 39, 1453–1458 (2018). https://doi.org/10.1007/s10072-018-3448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3448-5

Keywords

Navigation