Skip to main content
Log in

Peak shift in honey bee olfactory learning

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

If animals are trained with two similar stimuli such that one is rewarding (S+) and one punishing (S−), then following training animals show a greatest preference not for the S+, but for a novel stimulus that is slightly more different from the S− than the S+ is. This peak shift phenomenon has been widely reported for vertebrates and has recently been demonstrated for bumblebees and honey bees. To explore the nature of peak shift in invertebrates further, here we examined the properties of peak shift in honey bees trained in a free-flight olfactory learning assay. Hexanal and heptanol were mixed in different ratios to create a continuum of odour stimuli. Bees were trained to artificial flowers such that one odour mixture was rewarded with 2 molar sucrose (S+), and one punished with distasteful quinine (S−). After training, bees were given a non-rewarded preference test with five different mixtures of hexanal and heptanol. Following training bees’ maximal preference was for an odour mixture slightly more distinct from the S− than the trained S+. This effect was not seen if bees were initially trained with two distinct odours, replicating the classic features of peak shift reported for vertebrates. We propose a conceptual model of how peak shift might occur in honey bees. We argue that peak shift does not require any higher level of processing than the known olfactory learning circuitry of the bee brain and suggest that peak shift is a very general feature of discrimination learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avarguès-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5:e15370. doi:10.1371/journal.pone.0015370

    Article  PubMed Central  PubMed  Google Scholar 

  • Bazhenov M, Huerta R, Smith B (2013) A computational framework for understanding decision making through integration of basic learning rules. J Neurosci 33:5686–5697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bicker G, Schäfer S, Kingan T (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397

    CAS  PubMed  Google Scholar 

  • Cassenaer S, Laurent G (2012) Conditional modulation of spike-timing-dependent plasticity for olfactory learning. Nature 482:47–52. doi:10.1038/nature10776

    Article  CAS  PubMed  Google Scholar 

  • Cheng K (2002) Generalisation: mechanistic and functional explanations. Anim Cogn 5:33–40

    Article  PubMed  Google Scholar 

  • Cheng K, Spetch ML (2002) Spatial generalization and peak shift in humans. Learn Motiv 33:358–389. doi:10.1016/s0023-9690(02)00003-6

    Article  Google Scholar 

  • Cheng K, Spetch ML, Johnston M (1997) Spatial peak shift and generalization in pigeons. J Exp Psychol Anim Behav Process 23:469–481

    Article  Google Scholar 

  • Daly K, Chandra S, Durtschi M, Smith BH (2001) The generalization of an olfactory-based conditioned response reveals unique but overlapping odour representations in the moth Manduca sexta. J Exp Biol 203:3085–3095

    Google Scholar 

  • Deisig N, Lachnit H, Giurfa M (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Mem 9:112–121

    Article  PubMed Central  PubMed  Google Scholar 

  • Dyer AG, Rosa MGP, Reser DH (2008) Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 211:1180–1186

    Article  PubMed  Google Scholar 

  • Gamberale G, Tullberg BS (1996) Evidence for a peak-shift in predator generalization among aposematic prey. Proc R Soc Lond B 263:1329–1334

    Article  CAS  Google Scholar 

  • Ghirlanda S, Enquist M (1998) Artificial neural networks as models of stimulus control. Anim Behav 56:1383–1389

    Article  PubMed  Google Scholar 

  • Ghirlanda S, Enquist M (2003) A century of generalization. Anim Behav 66:15–36

    Article  Google Scholar 

  • Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19:54–66. doi:10.1101/lm.024711.111

    Article  PubMed  Google Scholar 

  • Gronenberg W (1987) Anatomical and physiological properties of feedback neurons of the mushroom bodies in the bee brain. J Exp Biol 46:115–125

    CAS  Google Scholar 

  • Grünewald B (1999a) Morphology of feedback neurons in the mushroom body of the honeybee Apis mellifera. J Comp Neurol 404:114–126

    Article  PubMed  Google Scholar 

  • Grünewald B (1999b) Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee Apis mellifera. J Comp Physiol A 185:565–576

    Article  Google Scholar 

  • Grusec T (1968) The peak shift in stimulus generalization: equivalent effects of errors and noncontingent shock. J Exp Anal Behav 11:239–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guerrieri F, Schubert M, Sandoz J-C, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanson HM (1959) Effects of discrimination training on generalization. J Exp Psychol 51:79–88

    Google Scholar 

  • Hovland CI (1937) The generalisation of conditioned responses. I. The sensory generalisation of conditioned responses with varying frequencies of tone. J Gen Psychol 17:125–148

    Article  Google Scholar 

  • Huerta R (2012) Learning pattern recognition and decision making in the insect brain. Paper presented at the proceedings of the 12th Granada seminar on computational and statistical physics, La Herradura, Spain

  • Huerta R, Nowotny T (2009) Fast and robust learning by reinforcement signals: explorations in the insect brain. Neural Comput 24:2473–2507

    Article  Google Scholar 

  • Huerta R, Nowotny T, Garcia-Sanchez M, Abarbanel HDL, Rabinovich MI (2004) Learning classification in the olfactory system of insects. Neural Comput 16:1601–1640

    Article  PubMed  Google Scholar 

  • Huerta R, Amigo JM, Nowotny T, Elkan C (2012) Inhibition in multiclass classification. Neural Comput 24:2473–2507

    Article  PubMed Central  PubMed  Google Scholar 

  • Ito I, Ong RCY, Raman B, Stopfer M (2008) Sparse odor representation and olfactory learning. Nat Neurosci 11:1177–1184. doi:10.1038/nn.2192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laska M, Galizia C, Giurfa M, Menzel R (1999) Olfactory discrimination ability and odor structure–activity relationships in honeybees. Chem Senses 24:429–438

    Article  CAS  PubMed  Google Scholar 

  • Leimar O, Tuomi J (1998) Synergistic selection and graded traits. Evol Ecol 12:59–71

    Article  Google Scholar 

  • Leonard AS, Dornhaus A, Papaj DR (2011) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214:113–121. doi:10.1242/jeb.047407

    Article  PubMed Central  PubMed  Google Scholar 

  • Lynn SK, Cnaani J, Papaj DR (2005) Peak shift discrimination learning as a mechanism of signal evolution. Evolution 59:1300–1305. doi:10.1554/04-284

    Article  PubMed  Google Scholar 

  • Mackintosh MJ (1974) The psychology of animal learning. Academic Press, London

    Google Scholar 

  • McLaren IPL, Mackintosh NJ (2002) Associative learning and elemental representation: II. Generalization and discrimination. Anim Learn Behav 30:177–200. doi:10.3758/bf03192828

    Article  CAS  PubMed  Google Scholar 

  • Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8:53–62

    Article  CAS  PubMed  Google Scholar 

  • Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62–71

    Article  PubMed  Google Scholar 

  • Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Ann Rev Neurosci 19:379–404

    Article  CAS  PubMed  Google Scholar 

  • Menzel R, Gumbert A, Kunze J, Shmida A, Vorobyev M (1997) Pollinators’ strategies in finding flowers. Isr J Plant Sci 45:141–156

    Article  Google Scholar 

  • Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27:11736–11747. doi:10.1523/jneurosci.2216-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Paldi N, Zilber S, Shafir S (2003) Associative olfactory learning of honeybees to differential rewards in multiple contexts: effect of odor component and mixture similarity. J Chem Ecol 29:2515–2538

    Article  CAS  PubMed  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. Oxford University Press, Oxford

    Google Scholar 

  • Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365. doi:10.1126/science.1070502

    Article  CAS  PubMed  Google Scholar 

  • Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Ann Rev Entomol 58:543–562

    Article  CAS  Google Scholar 

  • Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain—the neuronal connections of the alpha-lobe. J Comp Neurol 334:444–465. doi:10.1002/cne.903340309

    Article  CAS  PubMed  Google Scholar 

  • Spence KW (1937) The differential response in animals to stimuli varying within a single dimension. Psychol Rev 44:430–444

    Article  Google Scholar 

  • Strube-Bloss MF, Nawrot MP, Menzel R (2012) Mushroom body output neurons encode odor–reward associations. J Neurosci 31:3129–3140. doi:10.1523/jneurosci.2583-10.2011

    Article  Google Scholar 

  • Szyszka P, Galkin A, Menzel R (2008) Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body. Front Syst Neurosci 2. Article 3

  • Terrace HS (1968) Discrimination learning, the peak shift, and behavioral contrast. J Exp Anal Behav 11:727–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner GC, Bazhenov M, Laurent G (2008) Olfactory representations by Drosophila mushroom body neurons. J Neurophysiol 99:734–746. doi:10.1152/jn.01283.2007

    Article  PubMed  Google Scholar 

  • Weary D, Guilford T, Weisman R (1993) A product of discriminative learning may lead to female preferences for elaborate males. Evolution 47:333–336

    Article  Google Scholar 

  • Wright GA, Kottcamp S, Thompson MGA (2008) Generalization mediates sensitivity to complex odor features in the honeybee. PLoS One 3:e1704. doi:10.1371/journal.pone.0001704

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright GA, Choudhary AF, Bentley MA (2009) Reward quality influences the development of learned olfactory biases in honeybees. Proc R Soc Lond B 276:2597–2604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Barron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrew, S.C., Perry, C.J., Barron, A.B. et al. Peak shift in honey bee olfactory learning. Anim Cogn 17, 1177–1186 (2014). https://doi.org/10.1007/s10071-014-0750-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-014-0750-3

Keywords

Navigation