Skip to main content
Log in

Characterization of a Vibrio parahaemolyticus-targeting lytic bacteriophage SSJ01 and its application in artificial seawater

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus is a major foodborne pathogen causing serious illnesses. In this study, a new lytic bacteriophage SSJ01 that infects V. parahaemolyticus was isolated and characterized. It had a short non-contractile tail and belonged to the Caudoviricetes class. It rapidly adsorbed onto host cells, exhibited a short latent period, and has a large burst size. It showed lytic activities under a broad range of temperature (− 18 to 60 °C), pH (5 to 11), and salinity (0 to 6%). It contained 35 open reading frames with a G + C content of 49.16% without toxic or lysogen-forming genes. The MOI of 105 phage-treated group in vitro reduced the target cells up to 3.49-log CFU/mL at 6 °C and 3.47-log CFU/mL at 25 °C, respectively. In aquatic environments (6 and 25 °C), bactericidal activities showed a significant decrease within 2 h. Therefore, the bacteriophage SSJ01 has potential as a biocontrol agent to control V. parahaemolyticus in marine culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alatawi AS. A testbed for investigating the effect of salinity and turbidity in the red sea on white-LED-based underwater wireless communication. Applied Sciences. 12: 9266 (2022)

    Article  CAS  Google Scholar 

  • Droubogiannis S, Pavlidi L, Tsertou MI, Kokkari C, Skliros D, Flemetakis E, Katharios P. Vibrio phage Artemius, a novel phage infecting Vibrio alginolyticus. Pathogens. 11: 848 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmahdi S, DaSilva LV, Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food Microbiology. 57: 128-134 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Froelich BA, Daines DA. In hot water: effects of climate change on Vibrio-human interactions. Environmental Microbiology. 22: 4101-4111 (2020)

    Article  Google Scholar 

  • Gephart JA, Pace ML. Structure and evolution of the global seafood trade network. Environmental Research Letters. 10: 125014 (2015)

    Article  Google Scholar 

  • Guillen J, Natale F, Carvalho N, Casey J, Hofherr J, Druon J, Fiore G, Gibin M, Zanzi A, Martinsohn JT. Global seafood consumption footprint. Ambio. 48: 111-122 (2019)

    Article  PubMed  Google Scholar 

  • Hu M, Zhang H, Gu D, Ma Y, Zhou X. Identification of a novel bacterial receptor that binds tail tubular proteins and mediates phage infection of Vibrio parahaemolyticus. Emerging Microbes & Infections. 9: 855-867 (2020)

    Article  CAS  Google Scholar 

  • Hu Z, Chen X, Chen W, Li P, Bao C, Zhu L, Zhang H, Dong C, Zhang W. Siphoviridae phage PH669 capable of lysing some strains of O3 and O4 serotypes in Vibrio parahaemolyticus. Aquaculture. 545: 737192 (2021)

    Article  CAS  Google Scholar 

  • Hu Y, Lei D, Wu D, Xia J, Zhou W, Cui C. Residual β-lactam antibiotics and ecotoxicity to Vibrio fischeri, Daphnia magna of pharmaceutical wastewater in the treatment process. Journal of Hazardous Materials. 425: 127840 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Jang W, Kim T, Lee S, Jeon M, Noh D, Lee Y, Kim C, Lim E, Lee J, Lee E. Identification and characterization of the novel bacteriophage BPVP-3325 for the biocontrol of Vibrio parahaemolyticus infection in seafood. Aquaculture. 561: 738669 (2022)

    Article  CAS  Google Scholar 

  • Kang S, Zhang L, Liao J, Zhang D, Wu S, Zhang X, Qin Q, Wei J. Isolation and characterization of a newly discovered phage, V-YDF132, for lysing Vibrio harveyi. Viruses. 14: 1802 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim Y, Kim H, Choi S, Lee J. Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases. Food Microbiology. 94: 103630 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 25: 219-232 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Nam J. The determinants of live fish consumption frequency in South Korea. Food Research International. 120: 382-388 (2019)

    Article  PubMed  Google Scholar 

  • Loo KY, Letchumanan V, Law JWF, Pusparajah P, Goh BH, Mutalib NS, He YW, Lee LH. Incidence of antibiotic resistance in Vibrio spp. Reviews in Aquaculture. 12: 2590-2608 (2020)

    Article  Google Scholar 

  • Makarov R, Lomelí‐Ortega CO, Zermeño‐Cervantes LA, García‐Álvarez E, Gutiérrez‐Rivera JN, Cardona‐Félix CS, Martínez‐Díaz SF. Evaluation of a cocktail of phages for the control of presumptive Vibrio parahaemolyticus strains associated to acute hepatopancreatic necrosis disease. Aquaculture Research. 50: 3107-3116 (2019)

    Article  CAS  Google Scholar 

  • Martinez-Urtaza J, Bowers JC, Trinanes J, DePaola A. Climate anomalies and the increasing risk of Vibrio parahaemolyticus and Vibrio vulnificus illnesses. Food Research International. 43: 1780-1790 (2010)

    Article  Google Scholar 

  • Mateus L, Costa L, Silva Y, Pereira C, Cunha A, Almeida A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture. 424: 167-173 (2014)

    Article  Google Scholar 

  • Nasser A, Azizian R, Tabasi M, Khezerloo JK, Heravi FS, Kalani MT, Sadeghifard N, Amini R, Pakzad I, Radmanesh A. Specification of bacteriophage isolated against clinical methicillin-resistant Staphylococcus aureus. Osong Public Health and Research Perspectives. 10: 20 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndraha N, Hsiao H, Hsieh Y, Pradhan AK. Predictive models for the effect of environmental factors on the abundance of Vibrio parahaemolyticus in oyster farms in Taiwan using extreme gradient boosting. Food Control. 130: 108353 (2021)

    Article  CAS  Google Scholar 

  • Park K, Mok J, Kwon J, Ryu A, Kim S, Lee H. Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: a review. Fisheries and Aquatic Sciences. 21: 1-10 (2018)

    Article  Google Scholar 

  • Parra-Flores J, Aguirre J, Juneja V, Jackson EE, Cruz-Córdova A, Silva-Sanchez J, Forsythe S. Virulence and antibiotic resistance profiles of Cronobacter sakazakii and Enterobacter spp. involved in the diarrheic hemorrhagic outbreak in Mexico. Frontiers in Microbiology. 9: 2206 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiroz-Guzmán E, Peña-Rodriguez A, Vázquez-Juárez R, Barajas-Sandoval DR, Balcázar JL, Martínez-Díaz SF. Bacteriophage cocktails as an environmentally-friendly approach to prevent Vibrio parahaemolyticus and Vibrio harveyi infections in brine shrimp (Artemia franciscana) production. Aquaculture. 492: 273-279 (2018)

    Article  Google Scholar 

  • Rao NV, Shashidhar R, Bandekar JR. Induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio vulnificus in artificial sea water. World Journal of Microbiology and Biotechnology. 30: 2205-2212 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Liu W, Liu C. Effects of cold storage and thermal treatment on growth and survival of pathogenic Vibrio parahaemolyticus. International Conference on Bioinformatics and Biomedical Technology. 1: 371-373 (2010)

    Google Scholar 

  • Webb P. Introduction to oceanography: physical oceanography. Available at: https://rwu.pressbooks.pub/webboceanography/chapter/6-2-temperature/. Accessed Jan 1, 2023

  • Wong KC, Brown AM, Luscombe GM, Wong SJ, Mendis K. Antibiotic use for Vibrio infections: important insights from surveillance data. BMC Infectious Diseases. 15: 1-9 (2015)

    Article  Google Scholar 

  • Wong H, Wang T, Yang C, Tang C, Ying C, Wang C, Chang W. Characterization of a lytic Vibrio phage VP06 of Vibrio parahaemolyticus. Research in Microbiology. 170: 13-23 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Yang H, Yan N, Hou W, Wang H, Wang X, Wang H, Zhou M. Bacteriostatic effects of phage F23s1 and its endolysin on Vibrio parahaemolyticus. Journal of Basic Microbiology. 62: 963-974 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H, Ye Y, Gao X, Wu Q, Tan Z. Isolation and characterization of the novel phages vB_VpS_BA3 and vB_VpS_CA8 for lysing Vibrio parahaemolyticus. Frontiers in Microbiology. 11: 259 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang M, Chen H, Guo S, Tan S, Xie Z, Zhang J, Wu Q, Tan Z. Characterization and genome analysis of a novel Vibrio parahaemolyticus phage vB_VpP_DE17. Virus Research. 307: 198580 (2022a)

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Chen H, Huang Q, Xie Z, Liu Z, Zhang J, Ding Y, Chen M, Xue L, Wu Q. Characterization of the novel phage vB_VpaP_FE11 and its potential role in controlling Vibrio parahaemolyticus biofilms. Viruses. 14: 264 (2022b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Chen H, Huang Q, Huang S, He J, Zhang J, Wu Q, Li X, Hu W, Yang M. Characterization and genomic analysis of novel Vibrio parahaemolyticus phage vB_VpaP_DE10. Viruses. 14: 1609 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Liu D, Yang S, Almeida A, Guo Q, Zhang Z, Deng L, Wang D. Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control. 98: 156-163 (2019)

    Article  CAS  Google Scholar 

  • You H, Lee J, Oh M, Hong S, Kim D, Noh J, Kim M, Kim B. Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster. Food Research International. 150: 110779 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Zha S, Liu S, Su W, Shi W, Xiao G, Yan M, Liu G. Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi. Fish & Shellfish Immunology. 71: 393-398 (2017)

    Article  CAS  Google Scholar 

  • Zhang H, Yang Z, Zhou Y, Bao H, Wang R, Li T, Pang M, Sun L, Zhou X. Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. International Journal of Food Microbiology. 275: 24-31 (2018)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1058773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonjee Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Animal and human rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Chang, Y. Characterization of a Vibrio parahaemolyticus-targeting lytic bacteriophage SSJ01 and its application in artificial seawater. Food Sci Biotechnol 33, 1505–1515 (2024). https://doi.org/10.1007/s10068-023-01444-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01444-5

Keywords

Navigation