Skip to main content
Log in

Rottlerin suppresses lipid accumulation by inhibiting de novo lipogenesis and adipogenesis via LRP6/mTOR/SREBP1C in 3T3-L1 adipocytes

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Rottlerin is isolated from Mallotus japonicus, a plant rich in polyphenols. Rottlerin is a selective PKCδ-inhibitor and is also known as an uncoupler of oxidative phosphorylation and anti-neoplastic agent. However, its anti-obesity effect is yet to be established. Therefore, this study tested whether rottlerin inhibits adipogenesis and de novo lipogenesis via the LRP6/mTOR/SREBP1C pathway in 3T3-L1 adipocytes. Rottlerin dramatically decreased lipid accumulation assessed by Oil Red O as evidence to support the cellular phenotype (p < 0.001). Pivotal messenger RNA and protein expressions associated with de novo lipogenesis (SREBP1C, ACC1, FAS, and SCD1) and adipogenesis (PPARγ and C/EBPα) were subsequentially verified by rottlerin in a dose-dependent manner (p < 0.05). Further investigation revealed that rottlerin reduced the AKT/mTOR pathway via diminished total protein of LRP6 (p < 0.05). Collectively, these findings establish a causal link between rottlerin, LRP6, and the altered nutrient-sensing mTOR pathway, in which rottlerin regulates de novo lipogenesis and adipogenesis in white adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bazuine M, van der Zon GC, van de Ven R, van den Broek PJ, Maassen JA. Rottlerin inhibits multiple steps involved in insulin-induced glucose uptake in 3T3-L1 adipocytes. Biochemical Pharmacology. 68: 105-112 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Bezy O, Tran TT, Pihlajamäki J, Suzuki R, Emanuelli B, Winnay J, Mori MA, Haas J, Biddinger SB, Leitges M. PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. The Journal of Clinical Investigation. 121: 2504-2517 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annual Review of Physiology. 68: 123-158 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Bray GA, Greenway FL. Current and potential drugs for treatment of obesity. Endocrine Reviews. 20: 805-875 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Chhiber N, Kaur T, Singla S. Rottlerin, a polyphenolic compound from the fruits of Mallotus philippinensis (Lam.) Müll. Arg., impedes oxalate/calcium oxalate induced pathways of oxidative stress in male Wistar rats. Phytomedicine. 23: 989-997 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 92: 6-10 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Crewe C, Zhu Y, Paschoal VA, Joffin N, Ghaben AL, Gordillo R, Oh DY, Liang G, Horton JD, Scherer PE. SREBP-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mTORC1. JCI insight. 4 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Eissing L, Scherer T, Tödter K, Knippschild U, Greve JW, Buurman WA, Pinnschmidt HO, Rensen SS, Wolf AM, Bartelt A. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nature Communications. 4: 1-11 (2013)

    Article  Google Scholar 

  • Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart J-C, Briggs M, Spiegelman BM, Auwerx J. Regulation of peroxisome proliferator-activated receptor γ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Molecular and Cellular Biology. 19: 5495-5503 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming JW, McClendon KS, Riche DM. New obesity agents: lorcaserin and phentermine/topiramate. Annals of Pharmacotherapy. 47: 1007-1016 (2013)

    Article  PubMed  Google Scholar 

  • Frangioudakis G, Burchfield J, Narasimhan S, Cooney G, Leitges M, Biden T, Schmitz-Peiffer C. Diverse roles for protein kinase C δ and protein kinase C ε in the generation of high-fat-diet-induced glucose intolerance in mice: regulation of lipogenesis by protein kinase C δ. Diabetologia. 52: 2616-2620 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Gangwar M, Goel R, Nath G. Mallotus philippinensis Muell. Arg (Euphorbiaceae): ethnopharmacology and phytochemistry review. BioMed Research International. 2014 (2014)

    Article  Google Scholar 

  • Go GW. Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients. 7: 4453-4464 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go GW, Mani A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale Journal of Biology and Medicine. 85: 19 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Go GW, Srivastava R, Hernandez-Ono A, Gang G, Smith SB, Booth CJ, Ginsberg HN, Mani A. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metabolism. 19: 209-220 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gschwendt M, Muller H, Kielbassa K, Zang R, Kittstein W, Rincke G, Marks F. Rottlerin, a novel protein kinase inhibitor. Biochemical and Biophysical Research Communications. 199: 93-98 (1994)

    Article  CAS  PubMed  Google Scholar 

  • Ietta F, Maioli E, Daveri E, Oliveira JG, da Silva RJ, Romagnoli R, Cresti L, Avanzati AM, Paulesu L, de Freitas Barbosa B. Rottlerin-mediated inhibition of Toxoplasma gondii growth in BeWo trophoblast-like cells. Scientific Reports. 7: 1-9 (2017)

    Article  CAS  Google Scholar 

  • Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism. 65: 1109-1123 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Kayali AG, Austin DA, Webster NJ. Rottlerin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes by uncoupling mitochondrial oxidative phosphorylation. Endocrinology. 143: 3884-3896 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Reports. 2: 282-286 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopelman PG. Obesity as a medical problem. Nature 404: 635-643 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Lefterova MI, Lazar MA. New developments in adipogenesis. Trends in Endocrinology and Metabolism. 20: 107-114 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Lewis CA, Griffiths B, Santos CR, Pende M, Schulze A. Regulation of the SREBP transcription factors by mTORC1. Biochemical Society Transactions. 39: 495-499 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Singh R, Choi CS, Lee H-Y, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A. Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. Journal of Biological Chemistry. 287: 7213-7223 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Li Y. Salinomycin suppresses LRP6 expression and inhibits both Wnt/β‐catenin and mTORC1 signaling in breast and prostate cancer cells. Journal of Cellular Biochemistry. 115: 1799-1807 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Lin C, Li Y. Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin and mTORC1 signaling in prostate and breast cancer cells. Cellular Signalling. 26: 1303-1309 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maioli E, Torricelli C, Fortino V, Carlucci F, Tommassini V, Pacini A. Critical appraisal of the MTT assay in the presence of rottlerin and uncouplers. Biological Procedures Online. 11: 227 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani A, Radhakrishnan J, Wang H, Mani A, Mani M-A, Nelson-Williams C, Carew KS, Mane S, Najmabadi H, Wu D. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science. 315: 1278-1282 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melick CH, Jewell JL. Regulation of mTORC1 by upstream stimuli. Genes. 11: 989 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padwal RS, Majumdar SR. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. The Lancet. 369: 71-77 (2007)

    Article  CAS  Google Scholar 

  • Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proceedings of the National Academy of Sciences of USA. 114: 11818-11825 (2017)

    Article  CAS  Google Scholar 

  • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 168: 960-976 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltoff SP. Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase Cδ tyrosine phosphorylation. Journal of Biological Chemistry. 276: 37986-37992 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Soltoff SP. Rottlerin: an inappropriate and ineffective inhibitor of PKCδ. Trends in Pharmacological Sciences. 28: 453-458 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Zhang J, Go GW, Narayanan A, Nottoli TP, Mani A. Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease. Cell Reports. 13: 746-759 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Song K, Srivastava R, Dong C, Go GW, Li N, Iwakiri Y, Mani A. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. The FASEB Journal. 29: 3436-3445 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO Consultation on Obesity. Preventing and managing the global epidemic. World Health Organization Technical Report Series. 894: 1-253 (2000)

    Google Scholar 

  • World Health Organization. Obesity. WHO. Available from: https://www.who.int/health-topics/obesity#tab=tab_1. Accessed Feb 19, 2023.

  • Ye Z, Go GW, Singh R, Liu W, Keramati AR, Mani A. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. Journal of Biological Chemistry. 287: 1335-1344 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Mo D, Wu M, Chen H, Chen L, Li M, Chen Y. Activating transcription factor 4 regulates adipocyte differentiation via altering the coordinate expression of CCATT/enhancer binding protein β and peroxisome proliferator‐activated receptor γ. The FEBS Journal. 281: 2399-2409 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metabolism. 15: 279-291 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Burrington CM, Davenport SK, Johnson AK, Horsman MJ, Chowdhry S, Greene MW. PKCδ regulates hepatic triglyceride accumulation and insulin signaling in Leprdb/db mice. Biochemical and Biophysical Research Communications. 450: 1619-1625 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (2019R1F1A1063260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwang-woong Go.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kim, H.K., Kang, S. et al. Rottlerin suppresses lipid accumulation by inhibiting de novo lipogenesis and adipogenesis via LRP6/mTOR/SREBP1C in 3T3-L1 adipocytes. Food Sci Biotechnol 32, 1445–1452 (2023). https://doi.org/10.1007/s10068-023-01339-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01339-5

Keywords

Navigation