Skip to main content
Log in

An important link between the gut microbiota and the circadian rhythm: imply for treatments of circadian rhythm sleep disorder

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Currently, gut microbiota living in the gastrointestinal tract, plays an important role in regulating host’s sleep and circadian rhythms. As a tool, gut microbiota has great potential for treating circadian disturbance and circadian insomnia. However, the relationship between gut microbiota and circadian rhythms is still unclear, and the mechanism of action has still been the focus of microbiome research. Therefore, this article summarizes the current evidences associating gut microbiota with factors that impact host circadian rhythms neurology sleep disorder. Moreover, we discuss the changes to these systems in sleep disorder and the potential mechanism of intestinal microbiota in regulating circadian rhythms neurology sleep disorder via microbial metabolites. Meanwhile, based on the role of intestinal flora, it is provided a novel insight into circadian related insomnia and will be benefit the dietary treatment of circadian disturbance and the circadian related insomnia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad A, Helen O, Moi CC. High-glycemic-index carbohydrate meals shorten sleep onset. American Journal of Clinical Nutrition. 85: 426–430 (2007)

    Article  Google Scholar 

  • Ansoleaga B, Jove M,Schluter A,Garcia-Esparcia P, Moreno J, Pujol A, Pamplona R, Portero-Otin M, Ferrer I. Deregulation of purine metabolism in Alzheimer's disease. Neurobiology of Aging. 36: 68–80 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Bass J. Circadian topology of metabolism. Nature. 491: 348–356 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 330: 1349–1354 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict C, Vogel H, Jonas W, Woting A, Blaut M, Schurmann A, Cedernaes J. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Molecular Metabolism. 5: 1175–1186 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of lactobacillus strain regulates emotional behavior and central gaba receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences. 108: 16050–16055 (2011)

    Article  CAS  Google Scholar 

  • Broussard JL, Eve Van Cauter. Disturbances of sleep and circadian rhythms: novel risk factors for obesity. Current Opinion in Endocrinology & Diabetes and Obesity. 23: 353–359 (2016)

  • Capers PL, Fobian AD, Kaiser KA, Borah R, Allison DB. A systematic review and meta‐analysis of randomized controlled trials of the impact of sleep duration on adiposity and components of energy balance. Obesity Reviews. 16: 771–782 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenit MC, Matzaraki V, Tigchelaar EF, Zhernakova A. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica et Biophysica Acta - Molecular Basis of Disease. 1842: 1981–1992 (2014)

  • Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiology International. 30: 870–888 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng WY, Lam KL, Li XJ, Kong Alice PS, Cheung PC. Circadian disruption-induced metabolic syndrome in mice is ameliorated by oat β-glucan mediated by gut microbiota. Carbohydrate Polymers. 118216: 267 (2021)

    Google Scholar 

  • Cheng WY, Lam KL, Kong PS, Cheung CK. Prebiotic supplementation (beta-glucan and inulin) attenuates circadian misalignment induced by shifted light-dark cycle in mice by modulating circadian gene expression. Food Research International. 137: 109437 (2020)

  • Chiaro TR, Soto R, Stephens WZ, Kubinak JL, Petersen C, Gogokhia L, Bell R, Delgado JC, Cox J, Voth W. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Science Translational Medicine. 9: eaaf9044 (2017)

  • Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, V Da ugé, Naudon L, Rabot S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 42: 207–217 (2014)

  • Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience. 13: 701–712 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology and Hepatology. 16: 461–478 (2019)

    Article  PubMed  Google Scholar 

  • Derrien M,van HV, Johan ET. Fate, activity and impact of ingested bacteria within the human gut microbiota. Trends Microbiology. 23: 354–366 (2015)

  • Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 362: 776–780 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Molecular Autism. 7: 47 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Basle A, Firbank SJ, Zheng HJ, Robinson CV, Winterhalter M, Kleinekathofer U, Bolam DN, van den Berg B. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature. 541: 407 (2017)

  • Govindarajan K, MacSharry J, Casey PG, Shanahan F, Joyce SA, Gahan, CGM. Unconjugated bile acids influence expression of circadian genes: A potential mechanism for microbe-host crosstalk. PloS One. 11: e0167319 (2016)

  • Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, Gozal D. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice. Sleep. 38: U367 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamity MV, White SR, Walder RY, Schmidt MS, Brenner C, Hammond DL. Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain Volume. 158: 962–972 (2017)

    Article  CAS  Google Scholar 

  • Hu JM, Lin SL, Zheng BD, Cheung PK. Short-chain fatty acids in control of energy metabolism. Critical Reviews in Food Science and Nutrition. 58: 1243–1249 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek JL, Musaad SM, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. The American Journal of Clinical Nutrition. 106: 1220–1231 (2017)

    CAS  PubMed  Google Scholar 

  • Kitamura S, Katayose Y, Nakazaki K, Motomura Y, Oba K, Katsunuma R, Terasawa Y, Enomoto, M, Moriguchi Y, Hida A, Mishima K. Estimating individual optimal sleep duration and potential sleep debt. Scientific Reports. 6: 35812 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger JM, Obal F, Fang JD, Kubota, T, Taishi P. The role of cytokines in physiological sleep regulation. Annals of the New York Academy of Sciences. 933: 211–221 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Kuang Z, Wang YH, Li Y, Ye CQ, Ruhn KA, Behrendt CL, Olson EN, Hooper LV. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science. 365: 1428 (2019)

  • Kubota T, Fang JD, Brown RA, Krueger JM. Interleukin-18 promotes sleep in rabbits and rats. AJP Regulatory Integrative and Comparative Physiology. 281: R828–R838 (2001)

    Article  CAS  Google Scholar 

  • Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, Pierre JF, Heneghan AF, Nadimpalli A, Hubert N, Zale E, Wang Y, Huang Y, Theriault B, Dinner AR, Musch MW, Kudsk KA, Prendergast BJ, Gilbert JA, Chang EB. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 17: 681–689 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Niu Q, Wei Q, Zhang YQ, Ma X, Kim SW, Lin M, Huang R. Microbial shifts in the porcine distal gut in response to diets supplemented with enterococcus faecalis as alternatives to antibiotics. Scientific Reports. 7(1): 41395 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, van Esch B, Wagenaar G, Garssen J, Folkerts G, Henricks P. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. European Journal of Pharmacology. 831: 52–59 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li LQ, Long HP, Liu J, Liu JK. Xylarinaps a–e, five pairs of naphthalenone derivatives with neuroprotective activities from xylaria nigripes. Phytochemistry. 186: 112729 (2021)

  • Liang X, Bushman FD, Fitz-Gerald GA. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proceedings of the National Academy of Sciences of the United States of America. 112: 10479–10484 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao F, Zhang TJ, Mahan TE, Jiang H, Holtzman DM. Effects of growth hormone–releasing hormone on sleep and brain interstitial fluid amyloid-beta in an APP transgenic mouse model. Brain Behavior and Immunity. 47: 163–171 (2015)

    Article  CAS  Google Scholar 

  • Lin A, Shih CT, Huang CL, Wu CC, Lin CT. Hypnotic effects of lactobacillus fermentum ps150tm on pentobarbital-induced sleep in mice. Nutrients. 11: 2409 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Liu YY, Fatheree NY, Mangalat N, Rhoads JM. Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine. AJP-Gastrointestinal and Liver Physiology. 302: 608–617 (2012)

    Article  CAS  Google Scholar 

  • Liu Z, Wei ZY, Chen JY., Chen K, Mao XH, Liu QS, Dan Z. Acute sleep-wake cycle shift results in community alteration of human gut microbiome. mSphere. 5: e00914–19 (2020)

  • Lu YY, Fan CN, Li P, Lu YF, Chang XL, Qi KM. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Scientific Reports. 6: 37589 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyte M. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes. 5: 381–389 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall L, Born J. Brain–immune interactions in sleep. International Review of Neurobiology. 52: 93–131 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Melinda LJ, Henry B, Michelle B, Donald PL,Dorothy B. Sleep quality and the treatment of intestinal microbiota imbalance in chronic fatigue syndrome: a pilot study. Sleep Science. 8: 124–133 (2015)

    Article  Google Scholar 

  • Ming O, Kevin H, Ted A, Thomas SA. Adrenergic signaling plays a critical role in the maintenance of waking and in the regulation of REM sleep. Journal of Neurophysiology. 92: 2071–2082 (2004)

    Article  Google Scholar 

  • Miyazaki K, Itoh N, Yamamoto S, Higo-Yamamoto S, Nakakita Y, Kaneda H, Shigyo, T, Oishi K. Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sciences. 111: 47–52 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annual Review of Neuroscience. 35: 445–462 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musiek ES, Xiong DD, Holtzman DM. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Experimental and Molecular Medicine. 47: 3 (2015)

    Article  CAS  Google Scholar 

  • Pardini L, Kaeffer B, Trubuil A, Bourreille A, Galmiche J P. Human intestinal circadian clock: Expression of clock genes in colonocytes lining the Crypt. Chronobiology International. 22: 951–961 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Parkar SG, Kalsbeek A, Cheeseman JF. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms. 7: 41 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  • Peng MF, Lee SH, Rahaman SO, Biswas D. Dietary probiotic and metabolites improve intestinal homeostasis and prevent colorectal cancer. Food and Function. 11: 10724–10735 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Poroyko VA, Carreras A, Khalyfa A, Khalyfa AA, Leone V, Peris, E. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Scientific Reports. 6: 35405 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachael MK, Jacinta F, Ultan H, Dervla G, Séamus S, John HM, Andrew NC. Greater social jetlag associates with higher HbA1c in adults with type 2 diabetes: a cross sectional study. Sleep Medicine. 66: 1–9 (2020)

    Article  Google Scholar 

  • Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathogens. 1: 6 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Current Opinion in Gastroenterology. 30: 332–338 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes. 64: 847–58 (2015)

    Article  CAS  Google Scholar 

  • Song ZW, Cai YY, Lao XZ, Wang X, Lin XX, Cui YY, Kalavagunta P K, Liao J, Jin L, Shang J, Li J. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome. 7: 9 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Song D, Yang SC, Zhang X, Wang Y. The relationship between host circadian rhythms and intestinal microbiota: A new cue to improve health by tea polyphenols. Critical Reviews in Food Science and Nutrition. 61: 139-148 (2020)

    Article  PubMed  CAS  Google Scholar 

  • Song D, Ho CT, Zhang X, Wu ZF, Cao JX. Modulatory effect of cyclocarya paliurus flavonoids on the intestinal microbiota and liver clock genes of circadian rhythm disorder mice model. Food Research International. 138(Pt A): 109769 (2020a)

  • St-Onge, MP, Roberts A, Shechter A, Choudhury A R. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. Journal of Clinical Sleep Medicine: JCSM: Official Publication of the American Academy of Sleep Medicine. 12: 19–24 (2015)

    Google Scholar 

  • Strader AD, Woods SC. Gastrointestinal hormones and food intake. Gastroenterology. 128: 175–191 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Thaiss CA, Zeevi D, Levy M, Zilberman SG, Tengeler A, Abramson L, Korem, Zmora, Kuperman, Biton, Gilad, Harmelin, Shapiro, Halpern, Segal, Elinav. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 159: 514–529 (2014)

  • Timothy G, Dinan Roman M, Stilling, Catherine, Stanton, John, F, Cryan. Collective unconscious: How gut microbes shape human behavior. Journal of Psychiatric Research. 63: 1–9 (2015)

  • Voigt RM, Forsyth CB, Green SJ, Ece M, Phillip E, Vitaterna MH. Circadian disorganization alters intestinal microbiota. Plos One. 9: e97500 (2014)

  • Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani P.D, Theodorou V, Dekker J, Meheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. American Journal of Physiology-Gastrointestinal and Liver Physiology. 312: G171–G193 (2017)

  • Wu Y, Wan J, Choe U, Pham Q, Schoene NW, He Q, Li B, Yu L, Wang Thomas TY. Interactions between food and gut microbiota: Impact on human health. Annual Review Food Science and Technology. 10(25): 389–408 (2019)

    Article  CAS  Google Scholar 

  • Xiao M, Zheng WX, Jiang GP. Bifurcation and oscillatory dynamics of delayed cyclic gene networks including small RNAs. IEEE Transactions on Cybernetics. 49: 883–896 (2018)

    Article  PubMed  Google Scholar 

  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 161: 264–276 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Ningbo Natural Science Foundation (2019A610433).

Funding

Natural Science Foundation of Ningbo Municipality (Grant No. 2019A610433).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruilin Zhang or Laiyou Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Yang, W., Chen, G. et al. An important link between the gut microbiota and the circadian rhythm: imply for treatments of circadian rhythm sleep disorder. Food Sci Biotechnol 31, 155–164 (2022). https://doi.org/10.1007/s10068-021-01015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-021-01015-6

Keywords

Navigation