Skip to main content
Log in

Potential health benefits of phenolic compounds in grape processing by-products

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Prevention emerges as a powerful approach in minimizing the risk of deleterious lifestyle diseases because therapies do not necessarily guarantee a permanent cure. Accordingly, consumers’ growing preference for natural and health-promoting dietary options that are rich in antioxidants has become widespread. Grape (Vitis vinifera) is an antioxidant-rich fruit extensively grown for fresh or processed consumption. The long-term consumption of its polyphenolic antioxidants may promote multiple health benefits. However, grape pomace (GP), consisting of peel, seed, stem, and pulp, is discarded during grape processing, including juice extraction and winemaking, despite its substantial antioxidant content. Polyphenolic extraction techniques have been widely explored to date, but the consolidation of reported physiological impacts of GP-derived polyphenolic constituents is limited. Thus, this review highlights current studies of the potential applications of GP extract in disease prevention and treatment, emphasizing the major influence of polyphenolic compositions and origins of different grape varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DO. Phenolics and ripening in grape berries. Am. J. Enol. Vitic. 57: 249–256 (2006).

    CAS  Google Scholar 

  • Annapurna A, Reddy CS, Akondi RB, Rao SRC. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J. Pharm. Pharmacol. 61: 1365–74 (2009).

    CAS  PubMed  Google Scholar 

  • Avellone G, Di Garbo V, Campisi D, De Simone R, Raneli G, Scaglione R, Licata G. Effects of moderate Sicilian red wine consumption on inflammatory biomarkers of atherosclerosis. Eur. J. Clin. Nutr. 60: 41–47 (2006).

    CAS  PubMed  Google Scholar 

  • Averilla JN, Oh J, Wu Z, Liu KH, Jang CH, Kim HJ, Kim JS, Kim JS. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments. J. Sci. Food. Agric. 99: 4043–4053 (2019). https://doi.org/10.1002/jsfa.9632.

    Article  CAS  PubMed  Google Scholar 

  • Balea ŞS, Pârvu AE, Pop N, Marín FZ, Andreicuţ A, Pârvu M. Phytochemical profiling, antioxidant and cardio-protective properties of Pinot noir cultivar pomace extracts. Farmacia 66: 432–441 (2018).

    CAS  Google Scholar 

  • Bang SH, Hyun YJ, Shim J, Hong SW, Kim DH. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. J. Microbiol. Biotechnol. 25: 18–25 (2015).

    CAS  PubMed  Google Scholar 

  • Boussetta N, Lanoisellé JL, Bedel-Cloutour C, Vorobiev E. Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. J. Food Eng. 95: 192–198 (2009).

    CAS  Google Scholar 

  • Canals R, Llaudy MC, Valls J, Canals JM, Zamora F. Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening. J. Agric. Food Chem. 53: 4019–4025 (2005).

    CAS  PubMed  Google Scholar 

  • Casanova-Marti À, Serrano J, Portune KJ, Sanz Y, Blay MT, Terra X, Ardévol A, Pinent M. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct. 9: 1672–1682 (2018).

    CAS  PubMed  Google Scholar 

  • Castro-López C, Rojas R, Sánchez-Alejo EJ, Niño-Medina G, Martínez-Ávila GCG. Phenolic compounds recovery from grape fruit and by-products: An overview of extraction methods. pp. 103–123. In: A Morata (Ed.), Grape and Wine Biotechnology. InTech, London, UK (2016).

    Google Scholar 

  • Chacar S, Hajal J, Saliba Y, Bois P, Louka N, Maroun RG, Faivre JF, Fares N. Long-term intake of phenolic compounds attenuates age-related cardiac remodeling. Aging Cell 18: e12894 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Chacar S, Itani T, Hajal J, Saliba Y, Louka N, Faivre JF, Maroun R, Fares N. The impact of long-term intake of phenolic compounds-rich grape pomace on rat gut microbiota. J. Food Sci. 83: 246–251 (2018).

    CAS  PubMed  Google Scholar 

  • Chafer A, Pascual-Martí MC, Salvador A, Berna A. Supercritical fluid extraction and HPLC determination of relevant polyphenolic compounds in grape skin. J. Sep. Sci. 28: 2050–2056 (2005).

    CAS  PubMed  Google Scholar 

  • Cho YJ, Hong JY, Chun HS, Lee SK, Min HY. Ultrasonication-assisted extraction of resveratrol from grapes. J. Food Eng. 77: 725–730 (2006).

    CAS  Google Scholar 

  • Chojnacka K, Lewandowska U. Chemopreventive effects of polyphenol-rich extracts against cancer invasiveness and metastasis by inhibition of type IV collagenases expression and activity. J. Funct. Foods 46: 295–311 (2018).

    CAS  Google Scholar 

  • Cotoras M, Vivanco H, Melo R, Aguirre M, Silva E, Mendoza L. In vitro and in vivo evaluation of the antioxidant and prooxidant activity of phenolic compounds obtained from grape (Vitis vinifera) pomace. Molecules 19: 21154–21167 (2014).

    PubMed  PubMed Central  Google Scholar 

  • da Costa GF, Santos IB, de Bem GF, Cordeiro VSC, da Costa CA, de Carvalho L, Ognibene DT, Resende AC, de Moura RS. The beneficial effect of anthocyanidin-rich Vitis vinifera L. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phytother. Res. 31: 1621–1632 (2017).

    PubMed  Google Scholar 

  • Dashwood RH. Frontiers in polyphenols and cancer prevention. J. Nutr. 137: 267S–269S (2007).

    CAS  PubMed  Google Scholar 

  • de la Cerda-Carrasco A, López-Solís R, Nuñez-Kalasic H, Peña-Neira Á, Obreque-Slier E. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J. Sci. Food Agric. 95: 1521–1527 (2015).

    PubMed  Google Scholar 

  • de Oliveira WP, Biasoto ACT, Marques VF, dos Santos IM, Magalhães K, Correa LC, Negro-Dellacqua M, Miranda MS, de Camargo AC, Shahidi F. Phenolics from winemaking by-products better decrease VLDL-cholesterol and triacylglycerol levels than those of red wine in Wistar rats. J. Food Sci. 82: 2432–2437 (2017).

    PubMed  Google Scholar 

  • Del Pino-García R, Rivero-Pérez MD, González-SanJose ML, Ortega-Heras M, Garcia Lomillo JG, Muñiz P. Chemopreventive potential of powdered red wine pomace seasonings against colorectal cancer in HT-29 cells. J. Agric. Food Chem. 65: 66–73 (2017).

    PubMed  Google Scholar 

  • Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379: 335–9 (1996).

    CAS  PubMed  Google Scholar 

  • Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermato-endocrinology 4: 308–19 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido-Bañuelos G, Buica A, Schückel J, Zietsman AJJ, Willats WGT, Moore JP, Du Toit WJ. Investigating the relationship between cell wall polysaccharide composition and the extractability of grape phenolic compounds into Shiraz wines. Part II: Extractability during fermentation into wines made from grapes of different ripeness levels. Food Chem. 278: 26–35 (2019).

    PubMed  Google Scholar 

  • González-Abuin N, Martínez-Micaelo N, Margalef M, Blay M, Arola-Arnal A, Muguerza B, Ardévol A, Pinent M. A grape seed extract increases active glucagon-like peptide-1 levels after an oral glucose load in rats. Food Funct. 9: 2357–2364 (2014).

    Google Scholar 

  • Gouvinhas I, Santos RA, Queiroz M, Leal C, Saavedra MJ, Domínguez-Perles R, Rodrigues M, Barros AIRNA. Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind. Crops Prod. 126: 83–91 (2018).

    CAS  Google Scholar 

  • Holik AK, Stöger V, Hölz K, Somoza MM, Somoza V. Impact of free N ε-carboxymethyllysine, its precursor glyoxal and AGE-modified BSA on serotonin release from human parietal cells in culture. Food Funct. 9: 3906–3915 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218–220 (1997).

    CAS  PubMed  Google Scholar 

  • Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5: 3779–3827 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruk J, Duchnik E. Oxidative stress and skin diseases: possible role of physical activity. Asian Pac. J. Cancer Prev. 15: 561–568 (2014).

    PubMed  Google Scholar 

  • Kundu JK, Surh YJ. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett. 269: 243–261 (2008).

    CAS  PubMed  Google Scholar 

  • Landis-Piwowar KR, Iyer NR. Cancer chemoprevention: current state of the art. Cancer Growth Metastasis 7: 19–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanzi CR, Perdicaro DJ, Antoniolli A, Fontana AR, Miatello RM, Bottini R, Prieto MAV. Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome. Food Funct. 7: 1544–1553 (2016).

    Google Scholar 

  • Leikert JF, Räthel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106: 1614–1617 (2002).

    CAS  PubMed  Google Scholar 

  • Li H, Parry J, Weeda S, Ren S, Castonguay TW, Guo TL. Grape pomace aqueous extract (GPE) prevents high fat diet-induced diabetes and attenuates systemic inflammation. Food Nutr. Sci. 7: 647–660 (2016).

    CAS  Google Scholar 

  • Lingua MS, Wunderlin DA, Baroni MV. Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines. J. Funct. Foods 44: 86–94 (2018).

    CAS  Google Scholar 

  • Lu Y, Foo LY. The polyphenol constituents of grape pomace. Food Chem. 65: 1–8 (1999).

    CAS  Google Scholar 

  • Luo J, Wei Z, Zhang S, Peng X, Huang Y, Zhang Y, Lu J. Phenolic fractions from Muscadine grape “Noble” pomace can inhibit breast cancer cell MDA-MB-231 better than those from European grape “Cabernet Sauvignon” and induce S-phase arrest and apoptosis. J. Food Sci. 82: 1254–1263 (2017).

    CAS  PubMed  Google Scholar 

  • Maidin NM, Michael N, Oruna-Concha MJ, Jauregi P. Polyphenols extracted from red grape pomace by a surfactant based method show enhanced collagenase and elastase inhibitory activity. J. Chem. Technol. Biotechnol. 93: 1916–1924 (2018).

    Google Scholar 

  • Maluf DF, Gonçalves M, D’Angelo RWO, Girassol AB, Tulio AP, Pupo YM, Farago PV. Cytoprotection of antioxidant biocompounds from grape pomace: further exfoliant phytoactive ingredients for cosmetic products. Cosmetics 5: 46 (2018).

    Google Scholar 

  • Manca ML, Marongiu F, Castangia I, Catalán-Latorre A, Caddeo C, Bacchetta G, Ennas G, Zaru M, Fadda AM, Manconi M. Protective effect of grape extract phospholipid vesicles against oxidative stress skin damages. Ind. Crops Prod. 83: 561–567 (2016).

    CAS  Google Scholar 

  • Manson MM, Gescher A, Hudson EA, Plummer SM, Squires MS, Prigent SA. Blocking and suppressing mechanisms of chemoprevention by dietary constituents. Toxicol. Lett. 112–113: 499–505 (2000).

    PubMed  Google Scholar 

  • Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed. Res. Int. 2015: 905215 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Meini MR, Cabezudo I, Boschetti CE, Romanini D. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem. 283: 257–264 (2019).

    CAS  PubMed  Google Scholar 

  • Mildner-Szkudlarz S, Siger A, Szwengiel A, Bajerska J. Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chem. 172: 78–85 (2015).

    CAS  PubMed  Google Scholar 

  • Mohansrinivasan V, Devi CS, Deori M, Biswas A, Naine SJ. Exploring the anticancer activity of grape seed extract on skin cancer cell lines A431. Braz. Arch. Biol. Technol. 58: 540–546 (2015).

    CAS  Google Scholar 

  • Mokni M, Hamlaoui S, Kadri S, Limam F, Amri M, Marzouki L, Aouani E. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury. Pak. J. Pharm. Sci. 29: 961–968 (2016).

    CAS  PubMed  Google Scholar 

  • Nerlich AG, Schleicher ED. N ε-(carboxymethyl)lysine in atherosclerotic vascular lesions as a marker for local oxidative stress. Atherosclerosis 144: 41–47 (1999).

    CAS  PubMed  Google Scholar 

  • Nirmala JG, Akila S, Narendhirakannan RT, Chatterjee S. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv. Powder Technol. 28: 1170–1184 (2017).

    CAS  Google Scholar 

  • Oliveira M, Duarte E. Integrated approach to winery waste: waste generation and data consolidation. Front. Environ. Sci. Eng. 10: 168–176 (2016).

    Google Scholar 

  • Otero-Pareja MJ, Casas L, Fernández-Ponce MT, Mantell C, Martinez de la Ossa EJ. Green extraction of antioxidants from different varieties of red grape pomace. Molecules 20: 9686–9702 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker AK, de Cortázar-Atauri IG, van Leeuwen C, Chuine I. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aus. J. Grape Wine Res. 17: 206–216 (2011).

    Google Scholar 

  • Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta Mol. Basis Dis. 1852: 1202–1208 (2015).

    CAS  Google Scholar 

  • Peixoto CM, Dias MI, Alves MJ, Calhelha RC, Barros L, Pinho SP, Ferreira ICFR. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 253: 132–138 (2018).

    CAS  PubMed  Google Scholar 

  • Perde-Schrepler M, Chereches G, Brie I, Tatomir C, Postescu ID, Soran L, Filip A. Grape seed extract as photochemopreventive agent against UVB-induced skin cancer. J. Photochem. Photobiol. B Biol. 118: 16–21 (2013).

    CAS  Google Scholar 

  • Perdicaro DJ, Lanzi CR, Fontana AR, Antoniolli A, Piccoli P, Miatello RM, Diez ER, Prieto MAV. Grape pomace reduced reperfusion arrhythmias in rats with a high-fat-fructose diet. Food Funct. 10: 3501–3509 (2017).

    Google Scholar 

  • Petrovski G, Gurusamy N, Das DK. Resveratrol in cardiovascular health and disease. Ann. N. Y. Acad. Sci. 1215: 22–33 (2011).

    PubMed  Google Scholar 

  • Pintać D, Majkić T, Torović L, Orčić D, Beara I, Simin N, Mimica–Dukić N, Lesjak M. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind. Crops Prod. 111: 379–390 (2018).

    Google Scholar 

  • Radhakrishnan S, Reddivari L, Sclafani R, Das UN, Vanamala J. Resveratrol potentiates grape seed extract induced human colon cancer cell apoptosis. Front. Biosci. E3: 1509–1523 (2011).

    CAS  Google Scholar 

  • Rasines-Perea Z, Ky I, Cros G, Crozier A, Teissedre PL. Grape pomace: antioxidant activity, potential effect against hypertension and metabolites characterization after intake. Diseases 6: 60 (2018).

    CAS  PubMed Central  Google Scholar 

  • Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO. Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid. Med. Cell Longev. 2015: 340520 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro TP, Oliveira AC, Mendes-Junior LG, França KC, Nakao LS, Schini-Kerth VB, Medeiros IA. Cardiovascular effects induced by northeastern Brazilian red wine: Role of nitric oxide and redox sensitive pathways. J. Funct. Foods 22: 82–92 (2016).

    CAS  Google Scholar 

  • Rockenbach II, Gonzaga LV, Rizelio VM, Gonçalves AEDSS, Genovese MI, Fett R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 44: 897–901 (2011).

    CAS  Google Scholar 

  • Romero-Perez AI, Lamuela-Raventos RM, Andres-Lacueva C, de La Torre-Boronat MC. Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. J. Agric. Food Chem. 49: 210–215 (2001).

    CAS  PubMed  Google Scholar 

  • Rondeau P, Gambier F, Jolibert F, Brosse N. Compositions and chemical variability of grape pomaces from French vineyard. 43: 251–254 (2013).

    CAS  Google Scholar 

  • Sanhueza L, Melo R, Montero R, Maisey K, Mendoza L, Wilkens M. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS One 12: e0172273 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Serrano J, Casanova-Marti À, Gil-Cardoso K, Blay MT, Terra X, Pinent M, Ardévol A. Acutely administered grape-seed proanthocyanidin extract acts as a satiating agent. Food Funct. 7: 483–490 (2016).

    CAS  PubMed  Google Scholar 

  • Shankar S, Siddiqui I, Srivastava RK. Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol. Cell Biochem. 304: 273–285 (2007).

    CAS  PubMed  Google Scholar 

  • Silva V, Igrejas G, Falco V, Santos TP, Torres C, Oliveira AMP, Pereira JE, Amaral JS, Poeta P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 92: 516–522 (2018).

    CAS  Google Scholar 

  • Souquet JM, Labarbe B, Le Guernevé C, Cheynier V, Moutounet M. Phenolic composition of grape stems. J. Agric. Food Chem. 48: 1076–1080 (2000).

    CAS  PubMed  Google Scholar 

  • Spanghero M, Salem AZM, Robinson PH. Chemical composition, including secondary metabolites, and rumen fermentability of seeds and pulp of Californian (USA) and Italian grape pomaces. Anim. Feed Sci. Technol. 152: 243–255 (2009).

    CAS  Google Scholar 

  • Steward WP, Brown K. Cancer chemoprevention: a rapidly evolving field. Br. J. Cancer 109: 1–7 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira A, Baenas N, Dominguez-Perles R, Barros A, Rosa E, Moreno DA, Garcia-Viguera C. Natural bioactive compounds from winery by-products as health promoters: a review. Int. J. Mol. Sci. 15: 15638–15678 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenauer J, Mäckle S, Sußmann D, Schweiggert-Weisz U, Carle R. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia 101: 179–187 (2015).

    CAS  PubMed  Google Scholar 

  • Yacco RS, Watrelot AA, Kennedy JA. Red wine tannin structure–activity relationships during fermentation and maceration. J Agric Food Chem 64: 860–869 (2016).

    CAS  PubMed  Google Scholar 

  • Yu J, Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 48: 221–237 (2013).

    CAS  Google Scholar 

  • Yu J, Smith I, Karlton-Senaye B, Mikiashvili N, Williams L. Impacts of different drying methods on mold viability and ochratoxin A content of grape pomace. Int. J. Appl. Agric. Sci. 4: 35–42 (2018).

    Google Scholar 

  • Yuan F, Qian MC. Development of C13-norisoprenoids, carotenoids and other volatile compounds in Vitis vinifera L. Cv. Pinot noir grapes. Food Chem 192: 633–641 (2016).

    CAS  PubMed  Google Scholar 

  • Zillich OV, Schweiggert-Weisz U, Eisner P, Kerscher M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 37: 455–464 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant (Grant number 2017R1A2B4005087) funded by the Ministry of Science and ICT (MSIT); and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (Grant number 116026-03), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sang Kim.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averilla, J.N., Oh, J., Kim, H.J. et al. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci Biotechnol 28, 1607–1615 (2019). https://doi.org/10.1007/s10068-019-00628-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00628-2

Keywords

Navigation